Your browser doesn't support javascript.
loading
Defect patterns on the curved surface of fish retinae suggest a mechanism of cone mosaic formation.
Nunley, Hayden; Nagashima, Mikiko; Martin, Kamirah; Lorenzo Gonzalez, Alcides; Suzuki, Sachihiro C; Norton, Declan A; Wong, Rachel O L; Raymond, Pamela A; Lubensky, David K.
Afiliação
  • Nunley H; Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America.
  • Nagashima M; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America.
  • Martin K; Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America.
  • Lorenzo Gonzalez A; Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America.
  • Suzuki SC; Department of Biological Structure, University of Washington, Seattle, Washington, United States of America.
  • Norton DA; Department of Physics, Trinity College Dublin, Dublin, Ireland.
  • Wong ROL; Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America.
  • Raymond PA; Department of Biological Structure, University of Washington, Seattle, Washington, United States of America.
  • Lubensky DK; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.
PLoS Comput Biol ; 16(12): e1008437, 2020 12.
Article em En | MEDLINE | ID: mdl-33320887
The outer epithelial layer of zebrafish retinae contains a crystalline array of cone photoreceptors, called the cone mosaic. As this mosaic grows by mitotic addition of new photoreceptors at the rim of the hemispheric retina, topological defects, called "Y-Junctions", form to maintain approximately constant cell spacing. The generation of topological defects due to growth on a curved surface is a distinct feature of the cone mosaic not seen in other well-studied biological patterns like the R8 photoreceptor array in the Drosophila compound eye. Since defects can provide insight into cell-cell interactions responsible for pattern formation, here we characterize the arrangement of cones in individual Y-Junction cores as well as the spatial distribution of Y-junctions across entire retinae. We find that for individual Y-junctions, the distribution of cones near the core corresponds closely to structures observed in physical crystals. In addition, Y-Junctions are organized into lines, called grain boundaries, from the retinal center to the periphery. In physical crystals, regardless of the initial distribution of defects, defects can coalesce into grain boundaries via the mobility of individual particles. By imaging in live fish, we demonstrate that grain boundaries in the cone mosaic instead appear during initial mosaic formation, without requiring defect motion. Motivated by this observation, we show that a computational model of repulsive cell-cell interactions generates a mosaic with grain boundaries. In contrast to paradigmatic models of fate specification in mostly motionless cell packings, this finding emphasizes the role of cell motion, guided by cell-cell interactions during differentiation, in forming biological crystals. Such a route to the formation of regular patterns may be especially valuable in situations, like growth on a curved surface, where the resulting long-ranged, elastic, effective interactions between defects can help to group them into grain boundaries.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Células Fotorreceptoras Retinianas Cones Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Células Fotorreceptoras Retinianas Cones Idioma: En Ano de publicação: 2020 Tipo de documento: Article