Your browser doesn't support javascript.
loading
Characterization, expression and function analysis of the TLR3 gene in golden pompano (Trachinotus ovatus).
Wu, Meng; Zhu, Ke-Cheng; Guo, Hua-Yang; Guo, Liang; Liu, Bo; Jiang, Shi-Gui; Zhang, Dian-Chang.
Afiliação
  • Wu M; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China.
  • Zhu KC; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Tropical Aquaculture Research and Development
  • Guo HY; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Tropical Aquaculture Research and Development
  • Guo L; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Tropical Aquaculture Research and Development
  • Liu B; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China.
  • Jiang SG; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Tropical Aquaculture Research and Development
  • Zhang DC; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Tropical Aquaculture Research and Development
Dev Comp Immunol ; 117: 103977, 2021 04.
Article em En | MEDLINE | ID: mdl-33340590
Toll-like receptors (TLRs)are pattern recognition receptors (PRRs) that are important in invertebrate innate immunity for the recognition and elimination of pathogens. Although they were reported in many fishes, Toll-like receptors subfamily contain a large number of members with different functions that need to research in deep. In the present study, the full-length cDNA of TLR3 from the golden pompano, Trachinotus ovatus, was cloned and characterized. The full length of ToTLR3 cDNA was 3710 bp including an open reading frame of 2760 bp encoding a peptide of 919 amino acids. The derived amino acids sequence comprised of 14 leucine-rich repeats (LRR), capped with LRRCT followed by transmembrane domain and cytoplasmic Toll/IL-1R domain (TIR). Multiple sequence alignment and phylogenetic analysis revealed that ToTLR3 shared the highest similarity to the teleost fish and suggested ToTLR3 is fairly conservative in evolution process. Tissues distribution analysis indicated that ToTLR3 showed a tissue-specific variation with high expression in blood and liver. After the fish were stimulated by poly(I:C), flagellin and LPS, ToTLR3 expression in the liver, intestine, blood, kidney, skin and muscle was significantly upregulated in a time-depended manner, especially in immune related tissues such as liver, blood and kidney. Binding assay revealed the specificity of rToTLR3 for pathogen-associated molecular patterns (PAMPs) and bacteria that included Vibrio harveyi, V. vulnificus, V. anguillarum, Photobacterium damselae, Escherichia coli, Aeromonas hydrophila, Staphylococcus aureus and PolyI:C, LPS, Flagellin, and PGN. In addition, a luciferase reporter assay showed that overexpression ToTLR3 significantly increased NF-κB activity. Collectively, our results suggested that ToTLR3 might play an important role as a pattern recognition receptor (PRR) in the immune response towards pathogen infections, and transmiss the danger signal to downstream signaling pathways.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bactérias / Proteínas de Peixes / Receptor 3 Toll-Like / Doenças dos Peixes / Peixes / Moléculas com Motivos Associados a Patógenos Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bactérias / Proteínas de Peixes / Receptor 3 Toll-Like / Doenças dos Peixes / Peixes / Moléculas com Motivos Associados a Patógenos Idioma: En Ano de publicação: 2021 Tipo de documento: Article