Your browser doesn't support javascript.
loading
ß2-Adrenergic agonist salbutamol augments hypertrophy in MHCIIa fibers and sprint mean power output but not muscle force during 11 weeks of resistance training in young men.
Jessen, Søren; Reitelseder, Søren; Kalsen, Anders; Kreiberg, Michael; Onslev, Johan; Gad, Anders; Ørtenblad, Niels; Backer, Vibeke; Holm, Lars; Bangsbo, Jens; Hostrup, Morten.
Afiliação
  • Jessen S; Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
  • Reitelseder S; Institute of Sports Medicine, Bispebjerg University Hospital, Copenhagen, Denmark.
  • Kalsen A; Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
  • Kreiberg M; Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
  • Onslev J; Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
  • Gad A; Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
  • Ørtenblad N; Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
  • Backer V; Centre for Physical Activity Research, Rigshospitalet and University of Copenhagen, Copenhagen Denmark.
  • Holm L; Department of Otorhinolaryngology, Head and Neck Surgery & Audiology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark.
  • Bangsbo J; Institute of Sports Medicine, Bispebjerg University Hospital, Copenhagen, Denmark.
  • Hostrup M; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.
J Appl Physiol (1985) ; 130(3): 617-626, 2021 03 01.
Article em En | MEDLINE | ID: mdl-33357007
ABSTRACT
In this study, we examined the effect of ß2-agonist salbutamol at oral doses during a period of resistance training on sprint performance, quadriceps contractile function, skeletal muscle hypertrophy, fiber type composition, maximal activity of enzymes of importance for anaerobic energy turnover, and sarcoplasmic reticulum Ca2+ handling in young men. Twenty-six men (23 ± 2 yr; means ± SD) were randomized to daily intake of oral salbutamol (16 mg/day; RES+SAL) or placebo (RES) during 11 wk of full-body resistance training 3 times/wk. Mean power output during 10-s maximal cycling increased more (P = 0.027) in RES+SAL (+12%) than in RES (+7%), whereas peak power output increased similarly (RES+SAL +8%; RES +7%; P = 0.400). Quadriceps dynamic peak torque and maximal voluntary isometric torque increased by 13 and 14% (P ≤ 0.001) in RES+SAL and 13 and 13% (P ≤ 0.001) in RES, respectively. Myosin heavy-chain (MHC) isoform distribution transitioned from MHCI and MHCIIx toward MHCIIa in RES+SAL (P = 0.002), but not in RES (P = 0.323). MHCIIa cross-sectional-area increased more (P = 0.040) in RES+SAL (+35%) than RES (+21%). Sarcoplasmic reticulum Ca2+ release rate increased in both groups (RES+SAL +9%, P = 0.048; RES +13%, P = 0.008), whereas Ca2+-uptake rate increased only in RES (+12%, P = 0.022) but was not different from the nonsignificant change in RES+SAL (+2%, P = 0.484). Maximal activity of lactate dehydrogenase increased only in RES+SAL (+13%, P = 0.008). Muscle content of the dihydropyridine receptor, ryanodine receptor 1, and sarcoplasmic reticulum Ca2+-ATPase isoform 1 and 2 did not change with the intervention in either group (P ≥ 0.100). These observations indicate that the enhancement of sprint mean power output induced by salbutamol is at least partly attributed to greater hypertrophy of MHCIIa fibers and transition toward the MHCIIa isoform.NEW & NOTEWORTHY Here, we show that daily oral treatment with selective ß2-agonist salbutamol induces muscle fiber isoform transition from myosin-heavy-chain (MHC)-I toward MHCIIa and augments hypertrophy of MHCIIa fibers during a period of resistance training. Compared with placebo, salbutamol enhanced sprint mean power output, whereas peak power output and measures of muscle strength increased similarly during the resistance training period despite augmented hypertrophy with salbutamol. Thus, salbutamol is a muscle anabolic drug that can enhance sprint ability adaptations to resistance training.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Treinamento Resistido Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Treinamento Resistido Idioma: En Ano de publicação: 2021 Tipo de documento: Article