Your browser doesn't support javascript.
loading
Radiation-induced reactive oxygen species partially assemble neutrophil NADPH oxidase.
Owusu, Stephenson B; Hudik, Elodie; Férard, Céline; Dupré-Crochet, Sophie; Addison, Eric C D K; Preko, Kwasi; Bizouarn, Tania; Houée-Levin, Chantal; Baciou, Laura.
Afiliação
  • Owusu SB; Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France; Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • Hudik E; Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France.
  • Férard C; Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France.
  • Dupré-Crochet S; Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France.
  • Addison ECDK; Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; Medical Physics Department, Oncology Directorate, Komfo Anokye Teaching Hospital, Kumasi, Ghana.
  • Preko K; Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
  • Bizouarn T; Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France.
  • Houée-Levin C; Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France.
  • Baciou L; Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France. Electronic address: laura.baciou@universite-paris-saclay.fr.
Free Radic Biol Med ; 164: 76-84, 2021 02 20.
Article em En | MEDLINE | ID: mdl-33387605
ABSTRACT
Neutrophils are key cells from the innate immune system that destroy invading bacteria or viruses, thanks mainly to the non-mitochondrial reactive oxygen species (ROS) generated by the enzyme NADPH oxidase. Our aim was to study the response of neutrophils to situations of oxidative stress with emphasis on the impact on the NADPH oxidase complex. To mimic oxidative stress, we used gamma irradiation that generated ROS (OH•, O2•- and H2O2) in a quantitative controlled manner. We showed that, although irradiation induces shorter half-lives of neutrophil (reduced by at least a factor of 2), it triggers a pre-activation of surviving neutrophils. This is detectable by the production of a small but significant amount of superoxide anions, proportional to the dose (about 3 times that of sham). Investigations at the molecular level showed that this ROS increase was generated by the NADPH oxidase enzyme after neutrophils irradiation. The NADPH oxidase complex undergoes an incomplete assembly which includes p47phox and p67phox but excludes the G-protein Rac. Importantly, this irradiation-induced pre-activation is capable of considerably improving neutrophil reactivity. Indeed, we have observed that this leads to an increase in the production of ROS and the capacity of phagocytosis, leading to the conclusion that radiation induced ROS clearly behave as neutrophil primers.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radiação / Espécies Reativas de Oxigênio / NADPH Oxidases / Neutrófilos Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radiação / Espécies Reativas de Oxigênio / NADPH Oxidases / Neutrófilos Idioma: En Ano de publicação: 2021 Tipo de documento: Article