Your browser doesn't support javascript.
loading
Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production.
Vincent, Immanuel; Lee, Eun-Chong; Kim, Hyung-Man.
Afiliação
  • Vincent I; Power System and Sustainable Energy Laboratory, Department of Nanoscience and Engineering, INJE University, 607 Eobang-Dong, Gimhae-si, Gyongsangnam-do, 621-749, Republic of Korea.
  • Lee EC; Power System and Sustainable Energy Laboratory, Department of Nanoscience and Engineering, INJE University, 607 Eobang-Dong, Gimhae-si, Gyongsangnam-do, 621-749, Republic of Korea.
  • Kim HM; Power System and Sustainable Energy Laboratory, Department of Nanoscience and Engineering, INJE University, 607 Eobang-Dong, Gimhae-si, Gyongsangnam-do, 621-749, Republic of Korea. mechkhm@inje.ac.kr.
Sci Rep ; 11(1): 293, 2021 Jan 11.
Article em En | MEDLINE | ID: mdl-33432103
ABSTRACT
Anion exchange membrane (AEM) electrolysis is a promising solution for large-scale hydrogen production from renewable energy resources. However, the performance of AEM electrolysis is still lower than what can be achieved with conventional technologies. The performance of AEM electrolysis is limited by integral components of the membrane electrode assembly and the reaction kinetics, which can be measured by ohmic and charge transfer resistances. We here investigate and then quantify the contributions of the ohmic and charge transfer resistances, and the rate-determining steps, involved in AEM electrolysis by using electrochemical impedance spectroscopy analysis. The factors that have an effect on the performance, such as voltage, flow rate, temperature and concentration, were studied at 1.5 and 1.9 V. Increased voltage, flow rate, temperature and concentration of the electrolyte strongly enhanced the anodic activity. We observed that here the anodic reaction offered a greater contribution to the overpotential than the cathode did.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article