Your browser doesn't support javascript.
loading
Chirality in porous self-assembled monolayer networks at liquid/solid interfaces: induction, reversion, recognition and transfer.
Tobe, Yoshito; Tahara, Kazukuni; De Feyter, Steven.
Afiliação
  • Tobe Y; Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan and Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.
  • Tahara K; Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan and Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
  • De Feyter S; Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium.
Chem Commun (Camb) ; 57(8): 962-977, 2021 Feb 01.
Article em En | MEDLINE | ID: mdl-33432944
ABSTRACT
Chirality in two dimensions (2D) has attracted increasing attention with regard to interesting fundamental aspects as well as potential applications. This article reports several aspects of supramolecular chirality control as exemplified by self-assembled monolayer networks (SAMNs) formed by a class of chiral building blocks consisting of a triangular conjugated core and alkoxy chains on the periphery. It highlights 2D chirality induction phenomena through a classic "sergeants-and-soldiers" mechanism, in which the inducer is incorporated into a network component, as well as through a "supramolecular host-guest" mechanism, in which the inducer is entrapped in the porous space, leading to counterintuitive chirality reversal. Stereochemical control can be extended to three dimensions too, based on interlayer hydrogen bonding of the same class of building blocks bearing hydroxy groups, exhibiting diastereospecific bilayer formation at both single molecule level and supramolecular level arising from orientation between the top and bottom layers. Finally, we showcase that homochiral SAMNs can also be used as templates for the grafting of in situ generated aryl radicals, by covalent bond formation to the basal graphitic surface, thereby yielding topologically chiral functionalized graphite, and thus extending the potential of chiral SAMNs.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article