Your browser doesn't support javascript.
loading
α-MSH-induced activation of spinal MC1R but not MC4R enhances colorectal motility in anaesthetised rats.
Ueda, Hiromi H; Naitou, Kiyotada; Nakamori, Hiroyuki; Horii, Kazuhiro; Shiina, Takahiko; Masatani, Tatsunori; Shiraishi, Mitsuya; Shimizu, Yasutake.
Afiliação
  • Ueda HH; Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
  • Naitou K; Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
  • Nakamori H; Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
  • Horii K; Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
  • Shiina T; Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
  • Masatani T; Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
  • Shiraishi M; Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
  • Shimizu Y; Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan. yshimizu@gifu-u.ac.jp.
Sci Rep ; 11(1): 487, 2021 01 12.
Article em En | MEDLINE | ID: mdl-33436759
ABSTRACT
The central nervous system is involved in regulation of defaecation. It is generally considered that supraspinal regions control the spinal defaecation centre. However, signal transmission from supraspinal regions to the spinal defaecation centre is still unclear. In this study, we investigated the regulatory role of an anorexigenic neuropeptide, α-MSH, in the spinal defaecation centre in rats. Intrathecal administration of α-MSH to the L6-S1 spinal cord enhanced colorectal motility. The prokinetic effect of α-MSH was abolished by severing the pelvic nerves. In contrast, severing the colonic nerves or thoracic cord transection at the T4 level had no impact on the effect of α-MSH. RT-PCR analysis revealed MC1R mRNA and MC4R mRNA expression in the L6-S1 spinal cord. Intrathecally administered MC1R agonists, BMS470539 and SHU9119, mimicked the α-MSH effect, but a MC4R agonist, THIQ, had no effect. These results demonstrate that α-MSH binds to MC1R in the spinal defaecation centre and activates pelvic nerves, leading to enhancement of colorectal motility. This is, to our knowledge, the first report showing the functional role of α-MSH in the spinal cord. In conclusion, our findings suggest that α-MSH is a candidate for a neurotransmitter from supraspinal regions to the spinal defaecation centre.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reto / Medula Espinal / Alfa-MSH / Colo / Receptor Tipo 1 de Melanocortina / Receptor Tipo 4 de Melanocortina / Motilidade Gastrointestinal Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reto / Medula Espinal / Alfa-MSH / Colo / Receptor Tipo 1 de Melanocortina / Receptor Tipo 4 de Melanocortina / Motilidade Gastrointestinal Idioma: En Ano de publicação: 2021 Tipo de documento: Article