Your browser doesn't support javascript.
loading
Computer aid screening of COVID-19 using X-ray and CT scan images: An inner comparison.
Sethy, Prabira Kumar; Behera, Santi Kumari; Anitha, Komma; Pandey, Chanki; Khan, M R.
Afiliação
  • Sethy PK; Department of Electronics, Sambalpur University, Odisha, India.
  • Behera SK; Department of Computer Science and Engineering, VSSUT, Burla, Odisha, India.
  • Anitha K; Department of Electronics and Communication Engineering, Prasad V Potluri Siddhartha Institute of Technology, Vijayawada, Andrapradesh, India.
  • Pandey C; Department of Electronics and Telecommunication Engineering, GEC, Jagdalpur, CG, India.
  • Khan MR; Department of Electronics and Telecommunication Engineering, GEC, Jagdalpur, CG, India.
J Xray Sci Technol ; 29(2): 197-210, 2021.
Article em En | MEDLINE | ID: mdl-33492267
The objective of this study is to conduct a critical analysis to investigate and compare a group of computer aid screening methods of COVID-19 using chest X-ray images and computed tomography (CT) images. The computer aid screening method includes deep feature extraction, transfer learning, and machine learning image classification approach. The deep feature extraction and transfer learning method considered 13 pre-trained CNN models. The machine learning approach includes three sets of handcrafted features and three classifiers. The pre-trained CNN models include AlexNet, GoogleNet, VGG16, VGG19, Densenet201, Resnet18, Resnet50, Resnet101, Inceptionv3, Inceptionresnetv2, Xception, MobileNetv2 and ShuffleNet. The handcrafted features are GLCM, LBP & HOG, and machine learning based classifiers are KNN, SVM & Naive Bayes. In addition, the different paradigms of classifiers are also analyzed. Overall, the comparative analysis is carried out in 65 classification models, i.e., 13 in deep feature extraction, 13 in transfer learning, and 39 in the machine learning approaches. Finally, all classification models perform better when applying to the chest X-ray image set as comparing to the use of CT scan image set. Among 65 classification models, the VGG19 with SVM achieved the highest accuracy of 99.81%when applying to the chest X-ray images. In conclusion, the findings of this analysis study are beneficial for the researchers who are working towards designing computer aid tools for screening COVID-19 infection diseases.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Interpretação de Imagem Radiográfica Assistida por Computador / COVID-19 Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Interpretação de Imagem Radiográfica Assistida por Computador / COVID-19 Idioma: En Ano de publicação: 2021 Tipo de documento: Article