Your browser doesn't support javascript.
loading
Porous tantalum oxide with osteoconductive elements and antibacterial core-shell nanoparticles: A new generation of materials for dental implants.
Fialho, Luísa; Grenho, Liliana; Fernandes, Maria H; Carvalho, Sandra.
Afiliação
  • Fialho L; CFUM-UP, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal. Electronic address: luisafialho@fisica.uminho.pt.
  • Grenho L; Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-392 Porto, Portugal; LAQV/REQUIMTE, U. Porto, 4160-007 Porto, Portugal.
  • Fernandes MH; Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-392 Porto, Portugal; LAQV/REQUIMTE, U. Porto, 4160-007 Porto, Portugal.
  • Carvalho S; CFUM-UP, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; SEG-CEMMPRE Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra. Portugal.
Mater Sci Eng C Mater Biol Appl ; 120: 111761, 2021 Jan.
Article em En | MEDLINE | ID: mdl-33545902
ABSTRACT
Implant surfaces with cytocompatible and antibacterial properties are extremely desirable for the prevention of implant's infection and the promotion of osseointegration. In this work, both micro-arc oxidation (MAO) and DC magnetron sputtering techniques were combined in order to endow tantalum-based surfaces with osteoblastic cytocompatibility and antibacterial activity. Porous Ta2O5 layers containing calcium (Ca) and phosphorous (P) were produced by MAO (TaCaP) to mimic the bone tissue morphology and chemical composition (Ca/P ratio close to 1.67). Furthermore, zinc (Zn) nanoparticles were deposited onto the previous surfaces by DC magnetron sputtering without or with an additional thin carbon layer deposited over the nanoparticles (respectively, TaCaP-Zn and TaCaP-ZnC) to control the Zn ions (Zn2+) release. Before osteoblastic cell seeding, the surfaces were leached for three time-points in PBS. All modified samples were cytocompatible. TaCaP-Zn slightly impaired cell adhesion but this was improved in the samples leached for longer immersion times. The initial cell adhesion was clearly improved by the deposition of the carbon layer on the Zn nanoparticles, which also translated to a higher proliferation rate. Both Zn-containing surfaces presented antibacterial activity against S. aureus. The two surfaces were active against planktonic bacteria, and TaCaP-Zn also inhibited sessile bacteria. Attributing to the excellent in vitro performance of the nanostructured Ta surface, with osteoconductive elements by MAO followed by antimicrobial nanoparticles incorporation by magnetron sputtering, this work is clearly a progress on the strategy to develop a new generation of dental implants.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Implantes Dentários / Nanopartículas Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Implantes Dentários / Nanopartículas Idioma: En Ano de publicação: 2021 Tipo de documento: Article