Your browser doesn't support javascript.
loading
Molecular Mechanisms of Epithelial to Mesenchymal Transition Regulated by ERK5 Signaling.
Bhatt, Akshita B; Patel, Saloni; Matossian, Margarite D; Ucar, Deniz A; Miele, Lucio; Burow, Matthew E; Flaherty, Patrick T; Cavanaugh, Jane E.
Afiliação
  • Bhatt AB; Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
  • Patel S; Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
  • Matossian MD; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
  • Ucar DA; Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
  • Miele L; Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
  • Burow ME; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
  • Flaherty PT; Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
  • Cavanaugh JE; Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
Biomolecules ; 11(2)2021 01 29.
Article em En | MEDLINE | ID: mdl-33572742
ABSTRACT
Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-ß (TGF-ß), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and ß-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteína Quinase 7 Ativada por Mitógeno / Transição Epitelial-Mesenquimal / Mutação / Neoplasias Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteína Quinase 7 Ativada por Mitógeno / Transição Epitelial-Mesenquimal / Mutação / Neoplasias Idioma: En Ano de publicação: 2021 Tipo de documento: Article