Your browser doesn't support javascript.
loading
Coordinated changes in cellular behavior ensure the lifelong maintenance of the hippocampal stem cell population.
Harris, Lachlan; Rigo, Piero; Stiehl, Thomas; Gaber, Zachary B; Austin, Sophie H L; Masdeu, Maria Del Mar; Edwards, Amelia; Urbán, Noelia; Marciniak-Czochra, Anna; Guillemot, François.
Afiliação
  • Harris L; Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
  • Rigo P; Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
  • Stiehl T; Institute of Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany; Bioquant Center, Heidelberg University, 69120 Heidelberg, Germany.
  • Gaber ZB; Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
  • Austin SHL; Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
  • Masdeu MDM; Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
  • Edwards A; Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK.
  • Urbán N; Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
  • Marciniak-Czochra A; Institute of Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany; Bioquant Center, Heidelberg University, 69120 Heidelberg, Germany.
  • Guillemot F; Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK. Electronic address: francois.guillemot@crick.ac.uk.
Cell Stem Cell ; 28(5): 863-876.e6, 2021 05 06.
Article em En | MEDLINE | ID: mdl-33581058
ABSTRACT
Neural stem cell numbers fall rapidly in the hippocampus of juvenile mice but stabilize during adulthood, ensuring lifelong hippocampal neurogenesis. We show that this stabilization of stem cell numbers in young adults is the result of coordinated changes in stem cell behavior. Although proliferating neural stem cells in juveniles differentiate rapidly, they increasingly return to a resting state of shallow quiescence and progress through additional self-renewing divisions in adulthood. Single-cell transcriptomics, modeling, and label retention analyses indicate that resting cells have a higher activation rate and greater contribution to neurogenesis than dormant cells, which have not left quiescence. These changes in stem cell behavior result from a progressive reduction in expression of the pro-activation protein ASCL1 because of increased post-translational degradation. These cellular mechanisms help reconcile current contradictory models of hippocampal neural stem cell (NSC) dynamics and may contribute to the different rates of decline of hippocampal neurogenesis in mammalian species, including humans.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Adultas / Células-Tronco Neurais Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Adultas / Células-Tronco Neurais Idioma: En Ano de publicação: 2021 Tipo de documento: Article