Your browser doesn't support javascript.
loading
Massively parallel assessment of human variants with base editor screens.
Hanna, Ruth E; Hegde, Mudra; Fagre, Christian R; DeWeirdt, Peter C; Sangree, Annabel K; Szegletes, Zsofia; Griffith, Audrey; Feeley, Marissa N; Sanson, Kendall R; Baidi, Yossef; Koblan, Luke W; Liu, David R; Neal, James T; Doench, John G.
Afiliação
  • Hanna RE; Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA.
  • Hegde M; Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA.
  • Fagre CR; Cancer Program, Broad Institute, Cambridge, MA 02142, USA.
  • DeWeirdt PC; Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA.
  • Sangree AK; Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA.
  • Szegletes Z; Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA.
  • Griffith A; Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA.
  • Feeley MN; Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA.
  • Sanson KR; Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA.
  • Baidi Y; Cancer Program, Broad Institute, Cambridge, MA 02142, USA.
  • Koblan LW; Merkin Institute of Transformative Technologies in Healthcare, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
  • Liu DR; Merkin Institute of Transformative Technologies in Healthcare, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
  • Neal JT; Cancer Program, Broad Institute, Cambridge, MA 02142, USA.
  • Doench JG; Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA. Electronic address: jdoench@broadinstitute.org.
Cell ; 184(4): 1064-1080.e20, 2021 02 18.
Article em En | MEDLINE | ID: mdl-33606977
ABSTRACT
Understanding the functional consequences of single-nucleotide variants is critical to uncovering the genetic underpinnings of diseases, but technologies to characterize variants are limiting. Here, we leverage CRISPR-Cas9 cytosine base editors in pooled screens to scalably assay variants at endogenous loci in mammalian cells. We benchmark the performance of base editors in positive and negative selection screens, identifying known loss-of-function mutations in BRCA1 and BRCA2 with high precision. To demonstrate the utility of base editor screens to probe small molecule-protein interactions, we screen against BH3 mimetics and PARP inhibitors, identifying point mutations that confer drug sensitivity or resistance. We also create a library of single guide RNAs (sgRNAs) predicted to generate 52,034 ClinVar variants in 3,584 genes and conduct screens in the presence of cellular stressors, identifying loss-of-function variants in numerous DNA damage repair genes. We anticipate that this screening approach will be broadly useful to readily and scalably functionalize genetic variants.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Variação Genética / Sequenciamento de Nucleotídeos em Larga Escala / Edição de Genes Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Variação Genética / Sequenciamento de Nucleotídeos em Larga Escala / Edição de Genes Idioma: En Ano de publicação: 2021 Tipo de documento: Article