Your browser doesn't support javascript.
loading
Solute-adsorption enhanced heterogeneous nucleation: the effect of Cu adsorption on α-Al nucleation at the sapphire substrate.
Ma, Sida; Dong, Zihui; Zong, Nanfu; Jing, Tao; Dong, Hongbiao.
Afiliação
  • Ma S; School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. jingtao@mail.tsinghua.edu.cn.
  • Dong Z; School of Engineering, University of Leicester, Leicester, LE1 7RH, UK. h.dong@le.ac.uk.
  • Zong N; School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. jingtao@mail.tsinghua.edu.cn.
  • Jing T; School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. jingtao@mail.tsinghua.edu.cn.
  • Dong H; School of Engineering, University of Leicester, Leicester, LE1 7RH, UK. h.dong@le.ac.uk.
Phys Chem Chem Phys ; 23(9): 5270-5282, 2021 Mar 11.
Article em En | MEDLINE | ID: mdl-33629998
ABSTRACT
Interfacial adsorption of solute atoms is a promising means to tune heterogeneous nucleation. In this study, a new method has been established to theoretically evaluate the effect of solute addition on the nucleation potency of heterogeneous nucleation interfaces. The evaluation consists of three

steps:

(1) analyzing the solute adsorption behavior; (2) determining the nucleation mode; and (3) evaluating the effect of solute adsorption on nucleation potency using the solute-adsorbed interface model. A combination of the ab initio and molecular dynamics methods together with the two-phase thermodynamic model was used to evaluate a prototype Al-Cu/(0001) sapphire interface. It is found that solute Cu atoms adsorb at the interface between the melt and (0001) sapphire interface. The adsorption is driven by the strengthening of the Cu-Al bonds as revealed by the Bader charge analysis which is demonstrated to reduce interfacial energy. Furthermore, it is revealed that the interfacial adoption of Cu results in the formation of an Al-Cu adsorption layer, which enhances the interfacial chemical affinity thus enlarging the nucleation driving force. Meanwhile, the lattice mismatch between the sapphire substrate and the primary Al (α-Al) nucleus is decreased by Cu addition, which lowers the barrier for nucleation. The above two effects together increase the nucleation potency of the studied interface, which is in good agreement with previous experiments. It is proposed that the effect of solute adsorption shall be considered in the search for effective substrates for tuning the nucleation.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article