Your browser doesn't support javascript.
loading
Estimation of change in pleural pressure in assisted and unassisted spontaneous breathing pediatric patients using fluctuation of central venous pressure: A preliminary study.
Okuda, Nao; Kyogoku, Miyako; Inata, Yu; Isaka, Kanako; Moon, Kazue; Hatachi, Takeshi; Shimizu, Yoshiyuki; Takeuchi, Muneyuki.
Afiliação
  • Okuda N; Center for Infectious Disease, Nara Medical University Hospital, Kashihara-shi, Nara, Japan.
  • Kyogoku M; Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi-shi, Osaka, Japan.
  • Inata Y; Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi-shi, Osaka, Japan.
  • Isaka K; Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi-shi, Osaka, Japan.
  • Moon K; Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi-shi, Osaka, Japan.
  • Hatachi T; Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi-shi, Osaka, Japan.
  • Shimizu Y; Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi-shi, Osaka, Japan.
  • Takeuchi M; Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi-shi, Osaka, Japan.
PLoS One ; 16(3): e0247360, 2021.
Article em En | MEDLINE | ID: mdl-33647041
BACKGROUND: It is important to evaluate the size of respiratory effort to prevent patient self-inflicted lung injury and ventilator-induced diaphragmatic dysfunction. Esophageal pressure (Pes) measurement is the gold standard for estimating respiratory effort, but it is complicated by technical issues. We previously reported that a change in pleural pressure (ΔPpl) could be estimated without measuring Pes using change in CVP (ΔCVP) that has been adjusted with a simple correction among mechanically ventilated, paralyzed pediatric patients. This study aimed to determine whether our method can be used to estimate ΔPpl in assisted and unassisted spontaneous breathing patients during mechanical ventilation. METHODS: The study included hemodynamically stable children (aged <18 years) who were mechanically ventilated, had spontaneous breathing, and had a central venous catheter and esophageal balloon catheter in place. We measured the change in Pes (ΔPes), ΔCVP, and ΔPpl that was calculated using a corrected ΔCVP (cΔCVP-derived ΔPpl) under three pressure support levels (10, 5, and 0 cmH2O). The cΔCVP-derived ΔPpl value was calculated as follows: cΔCVP-derived ΔPpl = k × ΔCVP, where k was the ratio of the change in airway pressure (ΔPaw) to the ΔCVP during airway occlusion test. RESULTS: Of the 14 patients enrolled in the study, 6 were excluded because correct positioning of the esophageal balloon could not be confirmed, leaving eight patients for analysis (mean age, 4.8 months). Three variables that reflected ΔPpl (ΔPes, ΔCVP, and cΔCVP-derived ΔPpl) were measured and yielded the following results: -6.7 ± 4.8, - -2.6 ± 1.4, and - -7.3 ± 4.5 cmH2O, respectively. The repeated measures correlation between cΔCVP-derived ΔPpl and ΔPes showed that cΔCVP-derived ΔPpl had good correlation with ΔPes (r = 0.84, p< 0.0001). CONCLUSIONS: ΔPpl can be estimated reasonably accurately by ΔCVP using our method in assisted and unassisted spontaneous breathing children during mechanical ventilation.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Respiração Artificial / Pressão Venosa Central / Respiração com Pressão Positiva Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Respiração Artificial / Pressão Venosa Central / Respiração com Pressão Positiva Idioma: En Ano de publicação: 2021 Tipo de documento: Article