Your browser doesn't support javascript.
loading
High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids.
Oliver, Andrew; Chase, Alexander B; Weihe, Claudia; Orchanian, Stephanie B; Riedel, Stefan F; Hendrickson, Clark L; Lay, Mi; Sewall, Julia Massimelli; Martiny, Jennifer B H; Whiteson, Katrine.
Afiliação
  • Oliver A; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
  • Chase AB; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, California, USA.
  • Weihe C; Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA.
  • Orchanian SB; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
  • Riedel SF; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
  • Hendrickson CL; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
  • Lay M; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
  • Sewall JM; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
  • Martiny JBH; Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands.
  • Whiteson K; Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA.
mSystems ; 6(2)2021 Mar 16.
Article em En | MEDLINE | ID: mdl-33727392
ABSTRACT
Dietary shifts can have a direct impact on the gut microbiome by preferentially selecting for microbes capable of utilizing the various dietary nutrients. The intake of dietary fiber has decreased precipitously in the last century, while consumption of processed foods has increased. Fiber, or microbiota-accessible carbohydrates (MACs), persist in the digestive tract and can be metabolized by specific bacteria encoding fiber-degrading enzymes. The digestion of MACs results in the accumulation of short-chain fatty acids (SCFAs) and other metabolic by-products that are critical to human health. Here, we implemented a 2-week dietary fiber intervention aiming for 40 to 50 g of fiber per day within the context of a course-based undergraduate research experience (CURE) (n = 20). By coupling shotgun metagenomic sequencing and targeted gas chromatography-mass spectrometry (GC-MS), we found that the dietary intervention significantly altered the composition of individual gut microbiomes, accounting for 8.3% of the longitudinal variability within subjects. Notably, microbial taxa that increased in relative abundance as a result of the diet change included known MAC degraders (i.e., Bifidobacterium and Lactobacillus). We further assessed the genetic diversity within Bifidobacterium, assayed by amplification of the groEL gene. Concomitant with microbial composition changes, we show an increase in the abundance of genes involved in inositol degradation. Despite these changes in gut microbiome composition, we did not detect a consistent shift in SCFA abundance. Collectively, our results demonstrate that on a short-term timescale of 2 weeks, increased fiber intake can induce compositional changes of the gut microbiome, including an increase in MAC-degrading bacteria.IMPORTANCE A profound decrease in the consumption of dietary fiber in many parts of the world in the last century may be associated with the increasing prevalence of type II diabetes, colon cancer, and other health problems. A typical U.S. diet includes about ∼15 g of fiber per day, far less fiber than the daily recommended allowance. Changes in dietary fiber intake affect human health not only through the uptake of nutrients directly but also indirectly through changes in the microbial community and their associated metabolism. Here, we conducted a 2-week diet intervention in healthy young adults to investigate the impact of fiber consumption on the gut microbiome. Participants increased their average fiber consumption by 25 g/day on average for 2 weeks. The high-fiber diet intervention altered the gut microbiome of the study participants, including increases in known fiber-degrading microbes, such as Bifidobacterium and Lactobacillus.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article