Your browser doesn't support javascript.
loading
Evolution in Sinocyclocheilus cavefish is marked by rate shifts, reversals, and origin of novel traits.
Mao, Ting-Ru; Liu, Ye-Wei; Meegaskumbura, Madhava; Yang, Jian; Ellepola, Gajaba; Senevirathne, Gayani; Fu, Cheng-Hai; Gross, Joshua B; Pie, Marcio R.
Afiliação
  • Mao TR; Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, People's Republic of China.
  • Liu YW; Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, People's Republic of China.
  • Meegaskumbura M; Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, People's Republic of China. madhava_m@mac.com.
  • Yang J; Key Laboratory of Environment Change and Resource Use, Beibu Gulf, Nanning Normal University, Nanning, Guangxi, People's Republic of China.
  • Ellepola G; Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, People's Republic of China.
  • Senevirathne G; Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka.
  • Fu CH; Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL, USA.
  • Gross JB; Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, People's Republic of China.
  • Pie MR; Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
BMC Ecol Evol ; 21(1): 45, 2021 03 17.
Article em En | MEDLINE | ID: mdl-33731021
BACKGROUND: Natural model systems are indispensable for exploring adaptations in response to environmental pressures. Sinocyclocheilus of China, the most diverse cavefish clade in the world (75 species), provide unique opportunities to understand recurrent evolution of stereotypic traits (such as eye loss and sensory expansion) in the context of a deep and diverse phylogenetic group. However, they remain poorly understood in terms of their morphological evolution. Therefore, we explore key patterns of morphological evolution, habitat utilization and geographic distribution in these fishes. RESULTS: We constructed phylogenies and categorized 49 species based on eye-related condition (Blind, Micro-eyed, and Normal-eyed), habitat types (Troglobitic-cave-restricted; Troglophilic-cave-associated; Surface-outside caves) and existence of horns. Geometric-morphometric analyses show Normal-eyed morphs with fusiform shapes segregating from Blind/Micro-eyed deeper bodied morphs along the first principal-component axis; second axis accounts for shape complexity related to horns. The body shapes showed a significant association with eye-related condition and horn, but not habitat types. Ancestral reconstructions suggest at least three independent origins of Blind morphs, each with different levels of modification in relation to their ancestral Normal-eyed morphs; Sinocyclocheilus are also pre-adapted for cave dwelling. Our geophylogeny shows an east-to-west diversification spanning Pliocene and Pleistocene, with early-diversifying Troglobitic species dominating subterranean habitats of karstic plains whereas predominantly Surface forms inhabit hills to the west. Evolutionary rates analyses suggest that lineages leading to Blind morphs were characterized by significant rate shifts, such as a slowdown in body size evolution and a 5-20 fold increase in rate of eye regression, possibly explained by limited resource availability. Body size and eye size have undergone reversals, but not horns, a trait entailing considerable time to form. CONCLUSIONS: Sinocyclocheilus occupied cave habitats in response to drying associated with aridification of China during late Miocene and the Pliocene. The prominent cave-adaptations (eye-regression, horn-evolution) occur in clades associated with the extensive subterranean cave system in Guangxi and Guizhou provinces. Integration of morphology, phylogeny, rate analyses, molecular-dating and distribution show not only several remarkable patterns of evolution, but also interesting exceptions to these patterns signifying the diversification of Sinocyclocheilus as an invaluable model system to explore evolutionary novelty.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cyprinidae / Evolução Biológica Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cyprinidae / Evolução Biológica Idioma: En Ano de publicação: 2021 Tipo de documento: Article