Your browser doesn't support javascript.
loading
Modeling multifunctionality of genes with secondary gene co-expression networks in human brain provides novel disease insights.
Sánchez, Juan A; Gil-Martinez, Ana L; Cisterna, Alejandro; García-Ruíz, Sonia; Gómez-Pascual, Alicia; Reynolds, Regina H; Nalls, Mike; Hardy, John; Ryten, Mina; Botía, Juan A.
Afiliação
  • Sánchez JA; Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia E-30100, Spain.
  • Gil-Martinez AL; Department of Neurodegenerative Diseases, UCL Institute of Neurology, London WC1E 6BT, UK.
  • Cisterna A; Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia E-30100, Spain.
  • García-Ruíz S; Department of Neurodegenerative Diseases, UCL Institute of Neurology, London WC1E 6BT, UK.
  • Gómez-Pascual A; Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia E-30100, Spain.
  • Reynolds RH; Department of Neurodegenerative Diseases, UCL Institute of Neurology, London WC1E 6BT, UK.
  • Nalls M; Laboratory of Neurogenetics, Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
  • Hardy J; Data Tecnica International, Glen Echo, MD 20812, USA.
  • Ryten M; Department of Neurodegenerative Diseases, UCL Institute of Neurology, London WC1E 6BT, UK.
  • Botía JA; Department of Neurodegenerative Diseases, UCL Institute of Neurology, London WC1E 6BT, UK.
Bioinformatics ; 37(18): 2905-2911, 2021 09 29.
Article em En | MEDLINE | ID: mdl-33734320
ABSTRACT
MOTIVATION Co-expression networks are a powerful gene expression analysis method to study how genes co-express together in clusters with functional coherence that usually resemble specific cell type behavior for the genes involved. They can be applied to bulk-tissue gene expression profiling and assign function, and usually cell type specificity, to a high percentage of the gene pool used to construct the network. One of the limitations of this method is that each gene is predicted to play a role in a specific set of coherent functions in a single cell type (i.e. at most we get a single <gene, function, cell type> for each gene). We present here GMSCA (Gene Multifunctionality Secondary Co-expression Analysis), a software tool that exploits the co-expression paradigm to increase the number of functions and cell types ascribed to a gene in bulk-tissue co-expression networks.

RESULTS:

We applied GMSCA to 27 co-expression networks derived from bulk-tissue gene expression profiling of a variety of brain tissues. Neurons and glial cells (microglia, astrocytes and oligodendrocytes) were considered the main cell types. Applying this approach, we increase the overall number of predicted triplets <gene, function, cell type> by 46.73%. Moreover, GMSCA predicts that the SNCA gene, traditionally associated to work mainly in neurons, also plays a relevant function in oligodendrocytes. AVAILABILITYAND IMPLEMENTATION The tool is available at GitHub, https//github.com/drlaguna/GMSCA as open-source software. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Redes Reguladoras de Genes Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Redes Reguladoras de Genes Idioma: En Ano de publicação: 2021 Tipo de documento: Article