Your browser doesn't support javascript.
loading
Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease.
Hartmann, Oliver; Reissland, Michaela; Maier, Carina R; Fischer, Thomas; Prieto-Garcia, Cristian; Baluapuri, Apoorva; Schwarz, Jessica; Schmitz, Werner; Garrido-Rodriguez, Martin; Pahor, Nikolett; Davies, Clare C; Bassermann, Florian; Orian, Amir; Wolf, Elmar; Schulze, Almut; Calzado, Marco A; Rosenfeldt, Mathias T; Diefenbacher, Markus E.
Afiliação
  • Hartmann O; Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.
  • Reissland M; Mildred Scheel Early Career Center, Würzburg, Germany.
  • Maier CR; Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.
  • Fischer T; Mildred Scheel Early Career Center, Würzburg, Germany.
  • Prieto-Garcia C; Tumour Metabolism and Microenvironment Group, DKFZ Heidelberg, Heidelberg, Germany.
  • Baluapuri A; Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.
  • Schwarz J; Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Würzburg, Würzburg, Germany.
  • Schmitz W; Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.
  • Garrido-Rodriguez M; Mildred Scheel Early Career Center, Würzburg, Germany.
  • Pahor N; Faculty of Medicine, TICC, Technion Haifa, Haifa, Israel.
  • Davies CC; Cancer Systems Biology Group, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.
  • Bassermann F; Cancer Systems Biology Group, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.
  • Orian A; Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.
  • Wolf E; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
  • Schulze A; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
  • Calzado MA; Hospital Universitario Reina Sofía, Córdoba, Spain.
  • Rosenfeldt MT; Deregulated Protein Stability and Cancer Laboratory, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany.
  • Diefenbacher ME; Mildred Scheel Early Career Center, Würzburg, Germany.
Front Cell Dev Biol ; 9: 641618, 2021.
Article em En | MEDLINE | ID: mdl-33738287
ABSTRACT
Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53 fl/fllsl-KRas G12D/wt . Developing tumors were indistinguishable from Trp53 fl/fllsl-KRas G12D/ wt -derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article