Your browser doesn't support javascript.
loading
eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants.
Nørgaard, Louise; Olesen, Carsten Riis; Trøjelsgaard, Kristian; Pertoldi, Cino; Nielsen, Jeppe Lund; Taberlet, Pierre; Ruiz-González, Aritz; De Barba, Marta; Iacolina, Laura.
Afiliação
  • Nørgaard L; Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark. lnorga10@hotmail.com.
  • Olesen CR; School of Biological Sciences, Monash University, 18 Innovation Walk, Melbourne, 3800, Australia. lnorga10@hotmail.com.
  • Trøjelsgaard K; Danmarks Jægerforbund, Molsvej 34, 8410, Rønde, Denmark.
  • Pertoldi C; Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
  • Nielsen JL; Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
  • Taberlet P; Aalborg Zoo, Mølleparkvej 63, 9000, Aalborg, Denmark.
  • Ruiz-González A; Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
  • De Barba M; CNRS, Laboratoire D'Ecologie Alpine (LECA), Univ. Grenoble Alpes, 38000, Grenoble, France.
  • Iacolina L; UiT - The Arctic University of Norway, Tromsø Museum, Hansine Hansens veg 18, 9019, Tromsö, Norway.
Sci Rep ; 11(1): 6820, 2021 03 25.
Article em En | MEDLINE | ID: mdl-33767219
With an accelerating negative impact of anthropogenic actions on natural ecosystems, non-invasive biodiversity assessments are becoming increasingly crucial. As a consequence, the interest in the application of environmental DNA (eDNA) survey techniques has increased. The use of eDNA extracted from faeces from generalist predators, have recently been described as "biodiversity capsules" and suggested as a complementary tool for improving current biodiversity assessments. In this study, using faecal samples from two generalist omnivore species, the Eurasian badger and the red fox, we evaluated the applicability of eDNA metabarcoding in determining dietary composition, compared to macroscopic diet identification techniques. Subsequently, we used the dietary information obtained to assess its contribution to biodiversity assessments. Compared to classic macroscopic techniques, we found that eDNA metabarcoding detected more taxa, at higher taxonomic resolution, and proved to be an important technique to verify the species identification of the predator from field collected faeces. Furthermore, we showed how dietary analyses complemented field observations in describing biodiversity by identifying consumed flora and fauna that went unnoticed during field observations. While diet analysis approaches could not substitute field observations entirely, we suggest that their integration with other methods might overcome intrinsic limitations of single techniques in future biodiversity surveys.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cadeia Alimentar / Biodiversidade / Código de Barras de DNA Taxonômico / DNA Ambiental Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cadeia Alimentar / Biodiversidade / Código de Barras de DNA Taxonômico / DNA Ambiental Idioma: En Ano de publicação: 2021 Tipo de documento: Article