Your browser doesn't support javascript.
loading
Reducing Sanger confirmation testing through false positive prediction algorithms.
Holt, James M; Kelly, Melissa; Sundlof, Brett; Nakouzi, Ghunwa; Bick, David; Lyon, Elaine.
Afiliação
  • Holt JM; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA. jholt@hudsonalpha.org.
  • Kelly M; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
  • Sundlof B; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
  • Nakouzi G; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
  • Bick D; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
  • Lyon E; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
Genet Med ; 23(7): 1255-1262, 2021 07.
Article em En | MEDLINE | ID: mdl-33767343
PURPOSE: Clinical genome sequencing (cGS) followed by orthogonal confirmatory testing is standard practice. While orthogonal testing significantly improves specificity, it also results in increased turnaround time and cost of testing. The purpose of this study is to evaluate machine learning models trained to identify false positive variants in cGS data to reduce the need for orthogonal testing. METHODS: We sequenced five reference human genome samples characterized by the Genome in a Bottle Consortium (GIAB) and compared the results with an established set of variants for each genome referred to as a truth set. We then trained machine learning models to identify variants that were labeled as false positives. RESULTS: After training, the models identified 99.5% of the false positive heterozygous single-nucleotide variants (SNVs) and heterozygous insertions/deletions variants (indels) while reducing confirmatory testing of nonactionable, nonprimary SNVs by 85% and indels by 75%. Employing the algorithm in clinical practice reduced overall orthogonal testing using dideoxynucleotide (Sanger) sequencing by 71%. CONCLUSION: Our results indicate that a low false positive call rate can be maintained while significantly reducing the need for confirmatory testing. The framework that generated our models and results is publicly available at https://github.com/HudsonAlpha/STEVE .
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Genoma Humano / Sequenciamento de Nucleotídeos em Larga Escala Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Genoma Humano / Sequenciamento de Nucleotídeos em Larga Escala Idioma: En Ano de publicação: 2021 Tipo de documento: Article