Your browser doesn't support javascript.
loading
Tissue matters: In-vivo tissue properties of persons with spinal cord injuries to inform clinical models for pressure ulcer prevention.
Scott, Justin; Sheridan, Brian; Andrus, Rick; Monday, Nick; Selby, Amy; Bush, Tamara Reid.
Afiliação
  • Scott J; Department of Mechanical Engineering, Michigan State University, 428 S Shaw Lane, Rm 2555, East Lansing, MI 48824, USA.
  • Sheridan B; Level 11 Physical Therapy Clinic, 10483 Dixie Highway, Holly, MI 48442, USA.
  • Andrus R; Level 11 Physical Therapy Clinic, 10483 Dixie Highway, Holly, MI 48442, USA.
  • Monday N; Level 11 Physical Therapy Clinic, 10483 Dixie Highway, Holly, MI 48442, USA.
  • Selby A; Level 11 Physical Therapy Clinic, 10483 Dixie Highway, Holly, MI 48442, USA.
  • Bush TR; Department of Mechanical Engineering, Michigan State University, 428 S Shaw Lane, Rm 2555, East Lansing, MI 48824, USA. Electronic address: reidtama@msu.edu.
J Biomech ; 120: 110389, 2021 05 07.
Article em En | MEDLINE | ID: mdl-33780812
ABSTRACT
The prevalence of pressure ulcers in patients with spinal cord injuries has been estimated to be between 30% and 47%. Individuals with spinal cord injuries sit for a majority of the time, increasing the risk of developing pressure ulcers in the buttocks and thighs due to large internal stresses. Human body models have been developed to study the formation of pressure ulcers, yet a persistent limitation in these models has been the material properties used to represent the soft tissues in the buttocks and thighs. Specifically, soft tissue material property data have not included wheelchair users, such as those with spinal cord injuries. The goals of this research were 1) to determine the in-vivo material properties of soft tissue in the thighs and buttocks of individuals with spinal cord injuries and 2) compare these to properties obtained from able-bodied people. Results indicated that the proximal and middle thigh regions of those who had a spinal cord injury were softer than the same regions as able-bodied individuals, while the distal thigh regions were stiffer. These findings are vital because they indicate that models developed using properties from able-bodied individuals will not produce internal stress or strain magnitudes that represent individuals who have a spinal cord injury. This information suggests that models should obtain material property data sets from their desired population. Human body models must represent the population being studied if they are to inform clinical assessments and make accurate patient predictions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismos da Medula Espinal / Úlcera por Pressão Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismos da Medula Espinal / Úlcera por Pressão Idioma: En Ano de publicação: 2021 Tipo de documento: Article