Your browser doesn't support javascript.
loading
3D­printed Ti6Al4V scaffolds combined with pulse electromagnetic fields enhance osseointegration in osteoporosis.
Ye, Mingfu; Liu, Wenjun; Yan, Lihui; Cheng, Shaolong; Li, Xiaoxiong; Qiao, Shichong.
Afiliação
  • Ye M; Department of Oral Implantology, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian 361008, P.R. China.
  • Liu W; Department of Oral Implantology, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian 361008, P.R. China.
  • Yan L; Department of Oral Implantology, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian 361008, P.R. China.
  • Cheng S; Department of Oral Implantology, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian 361008, P.R. China.
  • Li X; Department of Pain, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201112, P.R. China.
  • Qiao S; Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China.
Mol Med Rep ; 23(6)2021 06.
Article em En | MEDLINE | ID: mdl-33786622
The loosening and displacement of prostheses after dental implantation and arthroplasty is a substantial medical burden due to the complex correction surgery. Three­dimensional (3D)­printed porous titanium (pTi) alloy scaffolds are characterized by low stiffness, are beneficial to bone ingrowth, and may be used in orthopedic applications. However, for the bio­inert nature between host bone and implants, titanium alloy remains poorly compatible with osseointegration, especially in disease conditions, such as osteoporosis. In the present study, 3D­printed pTi scaffolds with ideal pore size and porosity matching the bone tissue, were combined with pulse electromagnetic fields (PEMF), an exogenous osteogenic induction stimulation, to evaluate osseointegration in osteoporosis. In vitro, external PEMF significantly improved osteoporosis­derived bone marrow mesenchymal stem cell proliferation and osteogenic differentiation on the surface of pTi scaffolds by enhancing the expression of alkaline phosphatase, runt­related transcription factor­2, osteocalcin, and bone morphogenetic protein­2. In vivo, Microcomputed tomography analysis and histological evaluation indicated the external PEMF markedly enhanced bone regeneration and osseointegration. This novel therapeutic strategy has potential to promote osseointegration of dental implants or artificial prostheses for patients with osteoporosis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoporose / Titânio / Osseointegração / Engenharia Tecidual / Campos Eletromagnéticos / Ligas / Alicerces Teciduais / Impressão Tridimensional Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteoporose / Titânio / Osseointegração / Engenharia Tecidual / Campos Eletromagnéticos / Ligas / Alicerces Teciduais / Impressão Tridimensional Idioma: En Ano de publicação: 2021 Tipo de documento: Article