3Dprinted Ti6Al4V scaffolds combined with pulse electromagnetic fields enhance osseointegration in osteoporosis.
Mol Med Rep
; 23(6)2021 06.
Article
em En
| MEDLINE
| ID: mdl-33786622
The loosening and displacement of prostheses after dental implantation and arthroplasty is a substantial medical burden due to the complex correction surgery. Threedimensional (3D)printed porous titanium (pTi) alloy scaffolds are characterized by low stiffness, are beneficial to bone ingrowth, and may be used in orthopedic applications. However, for the bioinert nature between host bone and implants, titanium alloy remains poorly compatible with osseointegration, especially in disease conditions, such as osteoporosis. In the present study, 3Dprinted pTi scaffolds with ideal pore size and porosity matching the bone tissue, were combined with pulse electromagnetic fields (PEMF), an exogenous osteogenic induction stimulation, to evaluate osseointegration in osteoporosis. In vitro, external PEMF significantly improved osteoporosisderived bone marrow mesenchymal stem cell proliferation and osteogenic differentiation on the surface of pTi scaffolds by enhancing the expression of alkaline phosphatase, runtrelated transcription factor2, osteocalcin, and bone morphogenetic protein2. In vivo, Microcomputed tomography analysis and histological evaluation indicated the external PEMF markedly enhanced bone regeneration and osseointegration. This novel therapeutic strategy has potential to promote osseointegration of dental implants or artificial prostheses for patients with osteoporosis.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Osteoporose
/
Titânio
/
Osseointegração
/
Engenharia Tecidual
/
Campos Eletromagnéticos
/
Ligas
/
Alicerces Teciduais
/
Impressão Tridimensional
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article