Your browser doesn't support javascript.
loading
Design Strategies for Enhanced Conductivity in Metal-Organic Frameworks.
Johnson, Eric M; Ilic, Stefan; Morris, Amanda J.
Afiliação
  • Johnson EM; Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0131, United States.
  • Ilic S; Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0131, United States.
  • Morris AJ; Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0131, United States.
ACS Cent Sci ; 7(3): 445-453, 2021 Mar 24.
Article em En | MEDLINE | ID: mdl-33791427
ABSTRACT
Metal-organic frameworks (MOFs) are a class of materials which exhibit permanent porosity, high surface area, and crystallinity. As a highly tunable middle ground between heterogeneous and homogeneous species, MOFs have the potential to suit a wide variety of applications, many of which require conductive materials. The continued development of conductive MOFs has provided an ever-growing library of materials with both intrinsic and guest-promoted conductivity, and factors which limit or enhance conductivity in MOFs have become more apparent. In this Outlook, the factors which are believed to influence the future of MOF conductivity most heavily are highlighted along with proposed methods of further developing these fields. Fundamental studies derived from these methods may provide pathways to raise conductivity across a wide range of MOF structures.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article