Your browser doesn't support javascript.
loading
TMT-labelled quantitative proteomic analysis to predict the target promoting human odontogenic inflammatory granulation tissue transform into reparative granulation tissue.
Zhang, Jianying; Li, Dengke; Zheng, Xueni; Zhang, Wuyang; Hou, Rui; Liu, Changkui; Zhang, Yu; Hu, Kaijin; Zhou, Hongzhi; Xue, Yang.
Afiliação
  • Zhang J; Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China.
  • Li D; Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China.
  • Zheng X; Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China.
  • Zhang W; Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China.
  • Hou R; Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China.
  • Liu C; Department of Oral and Maxillofacial Surgery, School of Stomatology, Xi'an Medical University, Xi'an, China.
  • Zhang Y; Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China.
  • Hu K; Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China.
  • Zhou H; Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China.
  • Xue Y; Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China.
Acta Odontol Scand ; 79(6): 458-465, 2021 Aug.
Article em En | MEDLINE | ID: mdl-33823749
ABSTRACT

OBJECTIVES:

Odontogenic inflammatory diseases are main causes for alveolar bone breakdown and teeth loss, leaving great difficulties in denture restoration. Local inflammatory granulation tissue (IGT) is considered as pathological tissue and required to be removed. However, there are many evidences supporting that under appropriate intervention, IGT in alveolar bone maybe transformed into reparative granulation tissue (RGT), followed by ossification. Therefore, this study aimed to discover a specific target to promote this transformation. MATERIALS AND

METHODS:

After drawing out histological differences between IGT and RGT with haematoxylin and eosin (H&E) and immunohistochemical (IHC) assay staining, TMT-labelled quantitative proteomic analysis was applied to identify potential targets.

RESULTS:

The most striking histological property of RGT was found to be ECM deposition, which significantly decreased inflammatory cells, prominently increased fibroblasts as well as triggered changes of vascular types. Combined with histological findings and proteomic analysis, five KEGG pathways were associated with ECM, inflammation and angiogenesis and 49 pathways involved in differentially expressed proteins. COL1A1 was not only the most up-regulated protein, but also one of main hubs in protein-protein interaction regulatory network. Specific protease cathepsin K (CTSK) was identified. Level of CTSK in RGT was down-regulated to 69.10-76.97% (p < .05), with significantly up-regulated COL1A1, COL1A2, FN1 and TGFB1 included in focal adhesion, PI3K-Akt signalling pathways and angiogenesis. CTSK involved in transformation from IGT to RGT.

CONCLUSIONS:

CTSK might be a target to regulate transformation from IGT to RGT in alveolar bone through ECM, stem cells and angiogenesis mechanisms. However, further research is also clearly required.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosfatidilinositol 3-Quinases / Proteômica Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosfatidilinositol 3-Quinases / Proteômica Idioma: En Ano de publicação: 2021 Tipo de documento: Article