Your browser doesn't support javascript.
loading
An improved strategy for analysis of lipid molecules utilising a reversed phase C30 UHPLC column and scheduled MS/MS acquisition.
Jankevics, Andris; Jenkins, Amelia; Dunn, Warwick B; Najdekr, Lukás.
Afiliação
  • Jankevics A; School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
  • Jenkins A; School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
  • Dunn WB; School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT
  • Najdekr L; School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. Electronic address: lukas.najdekr@gmail.com.
Talanta ; 229: 122262, 2021 Jul 01.
Article em En | MEDLINE | ID: mdl-33838772
ABSTRACT
Measuring physiochemically diverse molecules (including lipids) which vary significantly in their concentrations poses a great analytical challenge. In untargeted lipidomics studies, reversed phase chromatography coupled with data-dependent MS/MS acquisition (DDA) is frequently applied. The optimal assay should deliver a high number of detected compounds with associated fragmentation data. In this work, we introduce novel 30 and 50 min UHPLC assays utilising lipid separation on a C30 stationary phase with a modified DDA strategy using smaller precursor m/z ranges scheduled for different lipid classes across the retention time range (defined as scheduled MS/MS). To evaluate the efficiency of the novel assays, mammalian tissue extracts (lamb liver, kidney and heart) were analysed and data were compared to a 15 min reversed phase C18 assay with multiple traditional DDA injections. The 30 min C30 assay detected double the number of detected compounds compared to the 15 min C18 assay. Applying the scheduled MS/MS DDA strategy with a single injection, a similar number of annotated lipids were reported compared to the traditional DDA strategy applied with five replicate injections on a C18 column. A longer 50 min C30 chromatographic assay did not result in an expected improvement in the chromatographic separation of overlapping isomer peaks compared to the 30 min method but did result in loss of accuracy of peak picking algorithms. We recommend the 30 min C30 assay with scheduled MS/MS acquisition as an efficient tool to analyse complex biological matrices and to annotate lipid species based on MS/MS data.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectrometria de Massas em Tandem / Lipídeos Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espectrometria de Massas em Tandem / Lipídeos Idioma: En Ano de publicação: 2021 Tipo de documento: Article