Spectroscopic and Theoretical Investigation of ß-Lactoglobulin Interactions with Hematoporphyrin and Protoporphyrin IX.
ACS Omega
; 6(14): 9680-9691, 2021 Apr 13.
Article
em En
| MEDLINE
| ID: mdl-33869948
Hematoporphyrin (HP) and protoporphyrin IX (PPIX) are useful porphyrin photosensitizers with significant application values in photodynamic therapy. Currently, many strategies have been developed to improve their clinical performance, such as incorporating them with nanoparticle (NP) carriers. In this work, we studied the possibility of using ß-lactoglobulin (BLG) as a potential NP carrier due to their hydrophobic affinity, pH sensitivity, and low cost of extraction and preservation. The interaction mechanisms of BLG with HP and PPIX were investigated using spectroscopic techniques and molecular docking methods. The molecular docking results agree well with the experimental results, which demonstrate that the formations of HP-BLG and PPIX-BLG complexes are endothermic processes and the main acting force is hydrophobic force. Furthermore, the opening-closure states of EF loop have a great influence on the HP-BLG complex formation, where the central hydrophobic cavity of ß-barrel is available for HP binding at pH 7.4 but not available at pH 6.2. However, the formation of the PPIX-BLG complex is less dependent on the states of the EF loop, and the binding sites of PPIX are both located on the external surface of BLG under both pH 7.4 and 6.2 conditions. All of our results would provide new insight into the mechanisms of noncovalent interactions between BLG and HP/PPIX. It is believed that this work indicated the potential application values of BLG in designing pH-sensitive carriers for the delivery of HP and PPIX, as well as other poorly soluble drugs.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article