Your browser doesn't support javascript.
loading
Comparison of edible brown algae extracts for the inhibition of intestinal carbohydrate digestive enzymes involved in glucose release from the diet.
Attjioui, Maha; Ryan, Sinead; Ristic, Aleksandra Konic; Higgins, Thomas; Goñi, Oscar; Gibney, Eileen R; Tierney, Joanna; O'Connell, Shane.
Afiliação
  • Attjioui M; Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland.
  • Ryan S; Marigot Ltd., Carrigaline, Ireland.
  • Ristic AK; UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.
  • Higgins T; Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland.
  • Goñi O; Marigot Ltd., Carrigaline, Ireland.
  • Gibney ER; UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.
  • Tierney J; Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland.
  • O'Connell S; Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Ireland.
J Nutr Sci ; 10: e5, 2021.
Article em En | MEDLINE | ID: mdl-33889388
ABSTRACT
Type II diabetes is considered the most common metabolic disorder in the developed world and currently affects about one in ten globally. A therapeutic target for the management of type II diabetes is the inhibition of α- glucosidase, an essential enzyme located at the brush border of the small intestinal epithelium. The inhibition of α-glucosidase results in reduced digestion of carbohydrates and a decrease in postprandial blood glucose. Although pharmaceutical synthetic inhibitors are available, these are usually associated with significant gastrointestinal side effects. In the present study, the impact of inhibitors derived from edible brown algae is being investigated and compared for their effect on glycaemic control. Carbohydrate- and polyphenolic-enriched extracts derived from Ascophyllum nodosum, Fucus vesiculosus and Undaria pinnatifida were characterised and screened for their inhibitory effects on maltase and sucrase enzymes. Furthermore, enzyme kinetics and the mechanism of inhibition of maltase and sucrase were determined using linear and nonlinear regression methods. All tested extracts showed a dose-dependent inhibitory effect of α-glucosidase with IC50 values ranging from 0⋅26 to 0⋅47 mg/ml for maltase; however, the only extract that was able to inhibit sucrase activity was A. nodosum, with an IC50 value of 0⋅83 mg/ml. The present study demonstrates the mechanisms in which different brown seaweed extracts with varying composition and molecular weight distribution differentially inhibit α-glucosidase activities. The data highlight that all brown seaweed extracts are not equal in the inhibition of carbohydrate digestive enzymes involved in postprandial glycaemia.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Alga Marinha / Glicemia / Extratos Vegetais / Phaeophyceae Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Alga Marinha / Glicemia / Extratos Vegetais / Phaeophyceae Idioma: En Ano de publicação: 2021 Tipo de documento: Article