Your browser doesn't support javascript.
loading
Comparison of CT Lung Density Measurements between Standard Full-Dose and Reduced-Dose Protocols.
Hatt, Charles R; Oh, Andrea S; Obuchowski, Nancy A; Charbonnier, Jean-Paul; Lynch, David A; Humphries, Stephen M.
Afiliação
  • Hatt CR; Imbio LLC, 1015 Glenwood Ave, Minneapolis, MN 55405 (C.R.H.); School of Medicine and Public Health, Division of Radiology, University of Michigan, Ann Arbor, Mich (C.R.H.); Department of Radiology, National Jewish Health, Denver, Colo (A.S.O., D.A.L., S.M.H.); Lerner Research Institute, Cleveland Cl
  • Oh AS; Imbio LLC, 1015 Glenwood Ave, Minneapolis, MN 55405 (C.R.H.); School of Medicine and Public Health, Division of Radiology, University of Michigan, Ann Arbor, Mich (C.R.H.); Department of Radiology, National Jewish Health, Denver, Colo (A.S.O., D.A.L., S.M.H.); Lerner Research Institute, Cleveland Cl
  • Obuchowski NA; Imbio LLC, 1015 Glenwood Ave, Minneapolis, MN 55405 (C.R.H.); School of Medicine and Public Health, Division of Radiology, University of Michigan, Ann Arbor, Mich (C.R.H.); Department of Radiology, National Jewish Health, Denver, Colo (A.S.O., D.A.L., S.M.H.); Lerner Research Institute, Cleveland Cl
  • Charbonnier JP; Imbio LLC, 1015 Glenwood Ave, Minneapolis, MN 55405 (C.R.H.); School of Medicine and Public Health, Division of Radiology, University of Michigan, Ann Arbor, Mich (C.R.H.); Department of Radiology, National Jewish Health, Denver, Colo (A.S.O., D.A.L., S.M.H.); Lerner Research Institute, Cleveland Cl
  • Lynch DA; Imbio LLC, 1015 Glenwood Ave, Minneapolis, MN 55405 (C.R.H.); School of Medicine and Public Health, Division of Radiology, University of Michigan, Ann Arbor, Mich (C.R.H.); Department of Radiology, National Jewish Health, Denver, Colo (A.S.O., D.A.L., S.M.H.); Lerner Research Institute, Cleveland Cl
  • Humphries SM; Imbio LLC, 1015 Glenwood Ave, Minneapolis, MN 55405 (C.R.H.); School of Medicine and Public Health, Division of Radiology, University of Michigan, Ann Arbor, Mich (C.R.H.); Department of Radiology, National Jewish Health, Denver, Colo (A.S.O., D.A.L., S.M.H.); Lerner Research Institute, Cleveland Cl
Radiol Cardiothorac Imaging ; 3(2): e200503, 2021 Apr.
Article em En | MEDLINE | ID: mdl-33969308
ABSTRACT

PURPOSE:

To evaluate the reproducibility and predicted clinical outcomes of CT-based quantitative lung density measurements using standard fixed-dose (FD) and reduced-dose (RD) scans. MATERIALS AND

METHODS:

In this retrospective analysis of prospectively acquired data, 1205 participants (mean age, 65 years ± 9 [standard deviation]; 618 men) enrolled in the COPDGene study who underwent FD and RD CT image acquisition protocols between November 2014 and July 2017 were included. Of these, the RD scans of 640 participants were also reconstructed using iterative reconstruction (IR). Median filtering was applied to the RD scans (RD-MF) to investigate an alternative noise reduction strategy. CT attenuation at the 15th percentile of the lung CT histogram (Perc15) was computed for all image types (FD, RD, RD-MF, and RD-IR). Reproducibility coefficients were calculated to quantify the measurement differences between FD and RD scans. The ability of Perc15 to predict chronic obstructive pulmonary disease (COPD) diagnosis and exacerbation frequency was investigated using receiver operating characteristic analysis.

RESULTS:

The Perc15 reproducibility coefficients with and without volume adjustment were as follows RD, 29.43 HU ± 0.62 versus 32.81 HU ± 1.70; RD-MF, 7.42 HU ± 0.42 versus 19.40 HU ± 2.65; and RD-IR, 7.10 HU ± 0.52 versus 22.46 HU ± 3.91. Receiver operating characteristic curve analysis indicated that Perc15 on volume-adjusted FD and RD scans were both predictive for COPD diagnosis (area under the receiver operating characteristic curve [AUC] FD, 0.724 ± 0.045; RD, 0.739 ± 0.045) and for having one or more exacerbation per year (AUCs FD, 0.593 ± 0.068; RD, 0.589 ± 0.066). Similar trends were observed when volume adjustment was not applied.

CONCLUSION:

A combination of volume adjustment and noise reduction filtering improved the reproducibility of lung density measurements computed using serial FD and RD CT scans.Supplemental material is available for this article.© RSNA, 2021.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article