Your browser doesn't support javascript.
loading
Biopersistence rate of metallic nanoparticles in the gastro-intestinal human tract (stage 0 of the EFSA guidance for nanomaterials risk assessment).
Taboada-López, María Vanesa; Vázquez-Expósito, Gemma; Domínguez-González, Raquel; Herbello-Hermelo, Paloma; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio.
Afiliação
  • Taboada-López MV; Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782 Santiago de Compostela, Spain.
  • Vázquez-Expósito G; Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782 Santiago de Compostela, Spain.
  • Domínguez-González R; Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782 Santiago de Compostela, Spain.
  • Herbello-Hermelo P; Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782 Santiago de Compostela, Spain.
  • Bermejo-Barrera P; Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782 Santiago de Compostela, Spain.
  • Moreda-Piñeiro A; Trace Elements, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782 Santiago de Compostela, Spain. Electronic
Food Chem ; 360: 130002, 2021 Oct 30.
Article em En | MEDLINE | ID: mdl-33975071
The European Food Safety Authority has published a guidance regarding risk assessment of nanomaterials in food and feed. Following these recommendations, an in vitro gastrointestinal digestion has been applied to study the biopersistence of TiO2 and Ag NPs in standards, molluscs and surimi. TiO2 NPs standards and TiO2 NPs/ TiO2 microparticles from E171 were not found to be degraded. Ag NPs proved to be more degradable than TiO2 NPs, but the biopersistence rates were higher than 12%, which means that Ag NPs are also biopersistent. Findings for seafood are quite similar to those obtained for TiO2 NPs and Ag NPs standards, although the calculation of the biopersistence rate proposed by the EFSA was not found to be straightforward for foodstuff (the use of the NPs concentration in the sample instead of the NPs concentration at initial time (sample mixed with the gastric solution before enzymatic hydrolysis) has been proposed.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Prata / Titânio / Nanopartículas Metálicas Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Prata / Titânio / Nanopartículas Metálicas Idioma: En Ano de publicação: 2021 Tipo de documento: Article