Your browser doesn't support javascript.
loading
Information and Thermodynamics: Fast and Precise Approach to Landauer's Bound in an Underdamped Micromechanical Oscillator.
Dago, Salambô; Pereda, Jorge; Barros, Nicolas; Ciliberto, Sergio; Bellon, Ludovic.
Afiliação
  • Dago S; Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
  • Pereda J; Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
  • Barros N; Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
  • Ciliberto S; Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
  • Bellon L; Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
Phys Rev Lett ; 126(17): 170601, 2021 Apr 30.
Article em En | MEDLINE | ID: mdl-33988419
The Landauer principle states that at least k_{B}Tln2 of energy is required to erase a 1-bit memory, with k_{B}T the thermal energy of the system. We study the effects of inertia on this bound using as one-bit memory an underdamped micromechanical oscillator confined in a double-well potential created by a feedback loop. The potential barrier is precisely tunable in the few k_{B}T range. We measure, within the stochastic thermodynamic framework, the work and the heat of the erasure protocol. We demonstrate experimentally and theoretically that, in this underdamped system, the Landauer bound is reached with a 1% uncertainty, with protocols as short as 100 ms.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article