Your browser doesn't support javascript.
loading
PI3K/AKT/mTOR signaling participates in insulin-mediated regulation of pathological myopia-related factors in retinal pigment epithelial cells.
Li, Yunqin; Jiang, Junliang; Yang, Jin; Xiao, Libo; Hua, Qiyun; Zou, Yue.
Afiliação
  • Li Y; Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China.
  • Jiang J; Orthopedics and Traumatology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, 650021, Kunming, Yunnan Province, China.
  • Yang J; Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China.
  • Xiao L; Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China.
  • Hua Q; Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China.
  • Zou Y; Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China. dr_zouyue@163.com.
BMC Ophthalmol ; 21(1): 218, 2021 May 17.
Article em En | MEDLINE | ID: mdl-34001063
BACKGROUND: Insulin positively correlates with the length of the eye axis and is increased in the vitreous and serum of patients with pathological myopia (PM). How insulin influences the physiological process of retinal pigment epithelial (RPE) cells in PM remains unclear. This study aimed to explore the effect of insulin on the ultrastructure and function of RPE cells and the role of PI3K/AKT/mTOR signaling involved in the development of PM. METHODS: The ARPE-19 cells were treated with different concentrations of insulin to analyze the cell morphology, cell viability, the protein level of insulin receptor ß, and the mRNA and protein levels of and PM-related factors (TIMP-2, MMP-2, bFGF, and IGF-1). The ultrastructure of APRE-19 cells was also observed after insulin treatment. Besides, the PI3K/AKT/mTOR signaling was studied with or without the PI3K inhibitor LY294002 in ARPE-19 cells. RESULTS: Insulin enhanced the cell viability of ARPE-19 cells and caused the endoplasmic reticulum to expand and vesiculate, suggesting increased secretion of growth factors and degeneration in ARPE-19 cells. Furthermore, the insulin receptor ß was stimulated with insulin treatment, subsequently, the phosphorylation of AKT and mTOR was positively activated, which was adversely suppressed in the presence of LY294002. The secretion of TIMP-2 and bFGF was significantly decreased, and the secretion of MMP-2 and IGF-1 was highly elevated with insulin treatment depending on the concentration in ARPE-19 cells. Furthermore, the effect of insulin on PM-related proteins was restored with the addition of LY294002. CONCLUSIONS: Our results indicated that insulin regulated the secretion of PM-related factors via the PI3K/AKT/mTOR signaling pathway in retinal pigment epithelial cells, and thus probably promoted the development of PM through transducing regulation signals from retina to choroid and sclera.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosfatidilinositol 3-Quinases / Miopia Degenerativa Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosfatidilinositol 3-Quinases / Miopia Degenerativa Idioma: En Ano de publicação: 2021 Tipo de documento: Article