Your browser doesn't support javascript.
loading
Green tea extract modulates lithium-induced thyroid follicular cell damage in rats.
Zaki, S M; Hussein, G H A; Helal, G M; Arsanyos, S F; Abd Algaleel, W A.
Afiliação
  • Zaki SM; Department of Anatomy, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia. zaky.sherif@yahoo.com.
  • Hussein GHA; Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt. zaky.sherif@yahoo.com.
  • Helal GM; Department of Anatomy and Embryology, Faculty of Medicine, Beni Suef University, Egypt.
  • Arsanyos SF; Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Egypt.
  • Abd Algaleel WA; Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt.
Folia Morphol (Warsz) ; 81(3): 594-605, 2022.
Article em En | MEDLINE | ID: mdl-34018174
ABSTRACT

BACKGROUND:

The aim of the current work was to clarify the modulation role of green tea extract (GTE) over structural and functional affection of the thyroid gland after long term use of lithium carbonate (LC). The suggested underlying mechanisms participating in thyroid affection were researched. MATERIALS AND

METHODS:

Twenty-four Sprague-Dawley adult albino rats were included in the work. They were divided into three groups (control, LC, and concomitant LC + GTE). The work was sustained for 8 weeks. Biochemical assays were performed (thyroid hormone profile, interleukin 6 [Il-6]). Histological, histochemical (Periodic Acid Schiff [PAS]) and immunohistochemical (caspase-3, tumour necrosis factor alpha [TNF-α], proliferating cell nuclear antigen [PCNA]) evaluations were done. Oxidative/antioxidative markers (malondialdehyde [MDA]/gluthathione [GSH], superoxide dismutase [SOD]) and Western blot evaluation of the Bcl2 family were done.

RESULTS:

Lithium carbonate induced hypothyroidism (decreased T3, T4/increased thyroid-stimulating hormone [TSH]). The follicles were distended, others were involuted. Some follicles were disorganised, others showed detached follicular cells. Apoptotic follicular cells were shown (BAX and caspase-3 increased, Bcl2 decreased, BAX/Bcl2 ratio increased). The collagen fibres' content and proinflammatory markers (TNF-α and IL-6) increased. The proliferative nuclear activity was supported by increased expression of PCNA. Oxidative stress was established (increased MDA/decreased GSH, SOD). With the use of GTE, the thyroid hormone levels increased, while the TSH level decreased. Apoptosis was improved as BAX decreased, Bcl2 increased, and BAX/Bcl2 ratio was normal. The collagen fibres' content and proinflammatory markers (TNF-α and IL-6) decreased. The expression of PCNA and caspase-3 were comparable to the control group. The oxidative markers were improved (decreased MDA/increased GSH, SOD).

CONCLUSIONS:

In conclusion, prolonged use of LC results in hypothyroidism, which is accompanied by structural thyroid damage. LC induced thyroid damage through oxidative stress that prompted sterile inflammation and apoptosis. With the use of GTE, the thyroid gland regained its structure and function. The protecting role of GTE is through antioxidant, antifibrotic, anti-inflammatory, and antiproliferative effects.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Epiteliais da Tireoide / Hipotireoidismo Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Epiteliais da Tireoide / Hipotireoidismo Idioma: En Ano de publicação: 2022 Tipo de documento: Article