Your browser doesn't support javascript.
loading
Sub-band target alignment common spatial pattern in brain-computer interface.
Zhang, Xianxiong; She, Qingshan; Chen, Yun; Kong, Wanzeng; Mei, Congli.
Afiliação
  • Zhang X; School of Automation, Hangzhou DianZi University, Hangzhou 310018, China.
  • She Q; School of Automation, Hangzhou DianZi University, Hangzhou 310018, China. Electronic address: qsshe@hdu.edu.cn.
  • Chen Y; School of Automation, Hangzhou DianZi University, Hangzhou 310018, China.
  • Kong W; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China.
  • Mei C; College of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China.
Comput Methods Programs Biomed ; 207: 106150, 2021 Aug.
Article em En | MEDLINE | ID: mdl-34034032
ABSTRACT
BACKGROUND AND

OBJECTIVE:

In the brain computer interface (BCI) field, using sub-band common spatial pattern (SBCSP) and filter bank common spatial pattern (FBCSP) can improve the accuracy of classification by selection a specific frequency band. However, in the cross-subject classification, due to the individual differences between different subjects, the performance is limited.

METHODS:

This paper introduces the idea of transfer learning and presents the sub-band target alignment common spatial pattern (SBTACSP) method and applies it to the cross-subject classification of motor imagery (MI) EEG signals. First, the EEG signals are bandpass-filtered into multiple frequency bands (sub-band filtering). Subsequently, the source domain trails are aligned into the target domain space in each frequency band. The CSP algorithm is then employed to extract features among which more representative features are selected by the minimum redundancy maximum relevance (mRMR) approach from each sub-band. Then the features of all sub-bands are fused. Finally, conventional linear discriminant analysis (LDA) algorithm is used for MI classification.

RESULTS:

Our method is evaluated on Datasets Ⅱa and Ⅱb of the BCI Competition Ⅳ. Compared with six state-of-the-art algorithms, the proposed SBTACSP method performed relatively the best and achieved a mean classification accuracy of 75.15% and 66.85% in cross-subject classification of Datasets Ⅱa and Ⅱb respectively.

CONCLUSION:

Therefore, the combination of sub-band filtering and transfer learning achieves superior classification performance compared to either one. The proposed algorithms will greatly promote the practical application of MI based BCIs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Interfaces Cérebro-Computador Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Interfaces Cérebro-Computador Idioma: En Ano de publicação: 2021 Tipo de documento: Article