Your browser doesn't support javascript.
loading
Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat model.
Gonçalves, Lívia de Souza; Sales, Lucas Peixoto; Saito, Tiemi Raquel; Campos, Juliane Cruz; Fernandes, Alan Lins; Natali, José; Jensen, Leonardo; Arnold, Alexandre; Ramalho, Lisley; Bechara, Luiz Roberto Grassmann; Esteca, Marcos Vinicius; Correa, Isis; Sant'Anna, Diogo; Ceroni, Alexandre; Michelini, Lisete Compagno; Gualano, Bruno; Teodoro, Walcy; Carvalho, Victor Henrique; Vargas, Bianca Scigliano; Medeiros, Marisa Helena Gennari; Baptista, Igor Luchini; Irigoyen, Maria Cláudia; Sale, Craig; Ferreira, Julio Cesar Batista; Artioli, Guilherme Giannini.
Afiliação
  • Gonçalves LS; Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, Brazil.
  • Sales LP; Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, Brazil.
  • Saito TR; Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, Brazil.
  • Campos JC; Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
  • Fernandes AL; Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, Brazil.
  • Natali J; Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil.
  • Jensen L; Laboratório de Hipertensão do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
  • Arnold A; Laboratório de Hipertensão do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
  • Ramalho L; Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
  • Bechara LRG; Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
  • Esteca MV; Laboratory of Cell and Tissue Biology, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Brazil.
  • Correa I; Laboratório de Hipertensão do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
  • Sant'Anna D; Laboratório de Hipertensão do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
  • Ceroni A; Departamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
  • Michelini LC; Departamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
  • Gualano B; Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, Brazil.
  • Teodoro W; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, Brazil.
  • Carvalho VH; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
  • Vargas BS; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
  • Medeiros MHG; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
  • Baptista IL; Laboratory of Cell and Tissue Biology, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Brazil.
  • Irigoyen MC; Laboratório de Hipertensão do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
  • Sale C; Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, UK.
  • Ferreira JCB; Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
  • Artioli GG; Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina, Divisão de Reumatologia, Universidade de São Paulo, SP, Brazil; Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de São Paulo, Brazil. Electronic address: artioli@usp.br.
Redox Biol ; 44: 102016, 2021 08.
Article em En | MEDLINE | ID: mdl-34038814
Histidine-containing dipeptides (HCDs) are abundantly expressed in striated muscles. Although important properties have been ascribed to HCDs, including H+ buffering, regulation of Ca2+ transients and protection against oxidative stress, it remains unknown whether they play relevant functions in vivo. To investigate the in vivo roles of HCDs, we developed the first carnosine synthase knockout (CARNS1-/-) rat strain to investigate the impact of an absence of HCDs on skeletal and cardiac muscle function. Male wild-type (WT) and knockout rats (4 months-old) were used. Skeletal muscle function was assessed by an exercise tolerance test, contractile function in situ and muscle buffering capacity in vitro. Cardiac function was assessed in vivo by echocardiography and cardiac electrical activity by electrocardiography. Cardiomyocyte contractile function was assessed in isolated cardiomyocytes by measuring sarcomere contractility, along with the determination of Ca2+ transient. Markers of oxidative stress, mitochondrial function and expression of proteins were also evaluated in cardiac muscle. Animals were supplemented with carnosine (1.8% in drinking water for 12 weeks) in an attempt to rescue tissue HCDs levels and function. CARNS1-/- resulted in the complete absence of carnosine and anserine, but it did not affect exercise capacity, skeletal muscle force production, fatigability or buffering capacity in vitro, indicating that these are not essential for pH regulation and function in skeletal muscle. In cardiac muscle, however, CARNS1-/- resulted in a significant impairment of contractile function, which was confirmed both in vivo and ex vivo in isolated sarcomeres. Impaired systolic and diastolic dysfunction were accompanied by reduced intracellular Ca2+ peaks and slowed Ca2+ removal, but not by increased markers of oxidative stress or impaired mitochondrial respiration. No relevant increases in muscle carnosine content were observed after carnosine supplementation. Results show that a primary function of HCDs in cardiac muscle is the regulation of Ca2+ handling and excitation-contraction coupling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carnosina / Dipeptídeos Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carnosina / Dipeptídeos Idioma: En Ano de publicação: 2021 Tipo de documento: Article