Your browser doesn't support javascript.
loading
Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick.
Hamid, Nur Jannah Abdul; Kadir, Aeslina Abdul; Hashar, Nurul Nabila Huda; Pietrusiewicz, Pawel; Nabialek, Marcin; Wnuk, Izabela; Gucwa, Marcek; Palutkiewicz, Pawel; Hashim, Azini Amiza; Sarani, Noor Amira; Nio, Amos Anak; Noor, Norazian Mohamed; Jez, Bartlomiej.
Afiliação
  • Hamid NJA; Department of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Batu Pahat, Johor, Malaysia.
  • Kadir AA; Department of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Batu Pahat, Johor, Malaysia.
  • Hashar NNH; Micropollutant Research Centre (MPRC), Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Batu Pahat, Johor, Malaysia.
  • Pietrusiewicz P; Center of Excellence Geopolymer and Green Technology (CEGeoGTech), University Malaysia Perlis, Arau 02600, Perlis, Malaysia.
  • Nabialek M; Department of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Batu Pahat, Johor, Malaysia.
  • Wnuk I; Department of Physics, Czestochowa University of Technology, 42-202 Czestochowa, Poland.
  • Gucwa M; Department of Physics, Czestochowa University of Technology, 42-202 Czestochowa, Poland.
  • Palutkiewicz P; Department of Physics, Czestochowa University of Technology, 42-202 Czestochowa, Poland.
  • Hashim AA; Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42-202 Czestochowa, Poland.
  • Sarani NA; Department of Technology and Automation, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42-202 Czestochowa, Poland.
  • Nio AA; Department of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Batu Pahat, Johor, Malaysia.
  • Noor NM; Department of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Batu Pahat, Johor, Malaysia.
  • Jez B; Department of Water and Environmental Engineering, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Batu Pahat, Johor, Malaysia.
Materials (Basel) ; 14(11)2021 May 24.
Article em En | MEDLINE | ID: mdl-34074057
Wastewater treatment activities in the chemical industry have generated abundant gypsum waste, classified as scheduled waste (SW205) under the Environmental Quality Regulations 2005. The waste needs to be disposed into a secure landfill due to the high heavy metals content which is becoming a threat to the environment. Hence, an alternative disposal method was evaluated by recycling the waste into fired clay brick. The brick samples were incorporated with different percentages of gypsum waste (0% as control, 10, 20, 30, 40 and 50%) and were fired at 1050 °C using 1 °C per minute heating rate. Shrinkage, dry density, initial rate of suction (IRS) and compressive strength tests were conducted to determine the physical and mechanical properties of the brick, while the synthetic precipitation leaching procedure (SPLP) was performed to scrutinize the leachability of heavy metals from the crushed brick samples. The results showed that the properties would decrease through the incorporation of gypsum waste and indicated the best result at 10% of waste utilization with 47.5% of shrinkage, 1.37% of dry density, 22.87% of IRS and 28.3% of compressive strength. In addition, the leachability test highlighted that the concentrations of Fe and Al was significantly reduced up to 100% from 4884 to 3.13 ppm (Fe) and from 16,134 to 0.81 ppm (Al), respectively. The heavy metals content in the bricks were oxidized during the firing process, which signified the successful remediation of heavy metals in the samples. Based on the permissible incorporation of gypsum waste into fired clay brick, this study promised a more green disposing method for gypsum waste, and insight as a potential towards achieving a sustainable end product.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article