Histone hypoacetylation contributes to neurotoxicity induced by chronic nickel exposure in vivo and in vitro.
Sci Total Environ
; 783: 147014, 2021 Aug 20.
Article
em En
| MEDLINE
| ID: mdl-34088129
Nickel (Ni) is a heavy metal that is both an environmental pollutant and a threat to human health. However, the effects of Ni on the central nervous system in susceptible populations have not been well established. In the present study, the neurotoxicity of Ni and its underlying mechanism were investigated in vivo and in vitro. Ni exposure through drinking water (10 mg Ni/L, 12 weeks) caused learning and memory impairment in mice. Reduced dendrite complexity was observed in both Ni-exposed mouse hippocampi and Ni-treated (200 µM, 72 h) primary cultured hippocampal neurons. The levels of histone acetylation, especially at histone H3 lysine 9 (H3K9ac), were reduced in Ni-exposed mouse hippocampi and cultured neurons. RNA sequencing and chromatin immunoprecipitation (ChIP) sequencing analyses revealed that H3K9ac-modulated gene expression were downregulated. Treatment with sodium butyrate, a histone deacetylase inhibitor, attenuated Ni-induced H3K9 hypoacetylation, neural gene downregulation and dendrite complexity reduction in cultured neurons. Sodium butyrate also restored Ni-induced memory impairment in mice. These results indicate that Ni-induced H3K9 hypoacetylation may be a contributor to the neurotoxicity of Ni. The finding that Ni disturbs histone acetylation in the nervous system may provide new insight into the health risk of chronic Ni exposure.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Histonas
/
Níquel
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article