Your browser doesn't support javascript.
loading
Biofouling impacts on polyethylene density and sinking in coastal waters: A macro/micro tipping point?
Amaral-Zettler, Linda A; Zettler, Erik R; Mincer, Tracy J; Klaassen, Michiel A; Gallager, Scott M.
Afiliação
  • Amaral-Zettler LA; NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, The Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, The University of Amsterdam, 1090 GE Amsterdam, The Netherlands; The Josephine Bay Paul Center for Compar
  • Zettler ER; NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, The Netherlands.
  • Mincer TJ; Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA.
  • Klaassen MA; NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, The Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, The University of Amsterdam, 1090 GE Amsterdam, The Netherlands.
  • Gallager SM; Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
Water Res ; 201: 117289, 2021 Aug 01.
Article em En | MEDLINE | ID: mdl-34102596
ABSTRACT
Biofouling causing an increase in plastic density and sinking is one of the hypotheses to account for the unexpectedly low amount of buoyant plastic debris encountered at the ocean surface. Field surveys show that polyethylene and polypropylene, the two most abundant buoyant plastics, both occur below the surface and in sediments, and experimental studies confirm that biofouling can cause both of these plastics to sink. However, studies quantifying the actual density of fouled plastics are rare, despite the fact that density will determine the transport and eventual fate of plastic in the ocean. Here we investigated the role of microbial biofilms in sinking of polyethylene microplastic and quantified the density changes natural biofouling communities cause in the coastal waters of the North Sea. Molecular data confirmed the variety of bacteria and eukaryotes (including animals and other multicellular organisms) colonizing the plastic over time. Fouling communities increased the density of plastic and caused sinking, and the plastic remained negatively buoyant even during the winter with lower growth rates. Relative surface area alone, however, did not predict whether a plastic piece sank. Due to patchy colonization, fragmentation of sinking pieces may result in smaller pieces regaining buoyancy and returning to the surface. Our results suggest that primarily multicellular organisms cause sinking of plastic pieces with surface area to volume ratios (SAV) below 100 (generally pieces above a couple hundred micrometers in size), and that this is a "tipping point" at which microbial biofilms become the key players causing sinking of smaller pieces with higher SAV ratios, including most fibers that are too small for larger (multicellular) organisms to colonize.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Incrustação Biológica Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Incrustação Biológica Idioma: En Ano de publicação: 2021 Tipo de documento: Article