Your browser doesn't support javascript.
loading
Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates.
MacPherson, Melissa J; Erickson, Sarah L; Kopp, Drayden; Wen, Pengqiang; Aghanoori, Mohamad-Reza; Kedia, Shreeya; Burns, Kaylan M L; Vitobello, Antonio; Tran Mau-Them, Frederic; Thomas, Quentin; Gold, Nina B; Brucker, William; Amlie-Wolf, Louise; Gripp, Karen W; Bodamer, Olaf; Faivre, Laurence; Muona, Mikko; Menzies, Lara; Baptista, Julia; Guegan, Katie; Male, Alison; Wei, Xing-Chang; He, Guiqiong; Long, Quan; Innes, A Micheil; Yang, Guang.
Afiliação
  • MacPherson MJ; Department of Medial Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada.
  • Erickson SL; Department of Medial Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada.
  • Kopp D; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
  • Wen P; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
  • Aghanoori MR; Department of Medial Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada.
  • Kedia S; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
  • Burns KML; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
  • Vitobello A; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Dijon, France; Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.
  • Tran Mau-Them F; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Dijon, France; Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.
  • Thomas Q; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Dijon, France; Centre de Génétique, Hôpital d'Enfants, CHU, 14 rue Paul Gaffarel, BP 77908, 21079 Dijon Cedex, France.
  • Gold NB; Division of Medical Genetics and Metabolism, Massachusetts General Hospital, Boston, MA 02115, USA; Harvard Medical School, Department of Pediatrics, Boston, MA, USA.
  • Brucker W; Division of Genetics and Genomics 300 Longwood Avenue, Boston Children's Hospital, Boston, MA 02115, USA.
  • Amlie-Wolf L; Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA.
  • Gripp KW; Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA.
  • Bodamer O; Division of Genetics and Genomics 300 Longwood Avenue, Boston Children's Hospital, Boston, MA 02115, USA.
  • Faivre L; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Dijon, France; Centre de Génétique, Hôpital d'Enfants, CHU, 14 rue Paul Gaffarel, BP 77908, 21079 Dijon Cedex, France.
  • Muona M; Blueprint Genetics, Espoo, Finland; Folkhälsan Research Center, Helsinki, Finland.
  • Menzies L; Department of Clinical Genetics, Great Ormond Street Hospital, London, UK.
  • Baptista J; Exeter Genomics Laboratory, Royal Devon and Exeter NHS Hospital, Exeter, UK; College of Medicine and Health, University of Exeter, Exeter, UK.
  • Guegan K; Exeter Genomics Laboratory, Royal Devon and Exeter NHS Hospital, Exeter, UK.
  • Male A; Department of Clinical Genetics, Great Ormond Street Hospital, London, UK.
  • Wei XC; Diagnostic Imaging, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB T3B 6A8, Canada.
  • He G; Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
  • Long Q; Department of Medial Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB
  • Innes AM; Department of Medial Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada. Electronic address: micheil.innes@albertahealthservices.ca.
  • Yang G; Department of Medial Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB
Cell Rep ; 35(10): 109226, 2021 06 08.
Article em En | MEDLINE | ID: mdl-34107259
The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport. In self-renewing NPCs, CELF2 resides in the cytoplasm, where it represses mRNAs encoding cell fate regulators and neurodevelopmental disorder-related factors. The translocation of CELF2 into the nucleus releases mRNA for translation and thereby triggers NPC differentiation. Our results reveal that CELF2 translocation between subcellular compartments orchestrates mRNA at the translational level to instruct cell fates in cortical development.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Ligação a RNA / Células-Tronco Neurais / Proteínas CELF / Proteínas do Tecido Nervoso Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Ligação a RNA / Células-Tronco Neurais / Proteínas CELF / Proteínas do Tecido Nervoso Idioma: En Ano de publicação: 2021 Tipo de documento: Article