Your browser doesn't support javascript.
loading
Development of Lentiviral Vectors Pseudotyped With Influenza B Hemagglutinins: Application in Vaccine Immunogenicity, mAb Potency, and Sero-Surveillance Studies.
Ferrara, Francesca; Del Rosario, Joanne Marie M; da Costa, Kelly A S; Kinsley, Rebecca; Scott, Simon; Fereidouni, Sasan; Thompson, Craig; Kellam, Paul; Gilbert, Sarah; Carnell, George; Temperton, Nigel.
Afiliação
  • Ferrara F; Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.
  • Del Rosario JMM; Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.
  • da Costa KAS; Department of Physical Sciences & Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines.
  • Kinsley R; Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.
  • Scott S; Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.
  • Fereidouni S; Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
  • Thompson C; Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent & University of Greenwich, Chatham, United Kingdom.
  • Kellam P; Research Institute of Wildlife Ecology, Veterinary Medicine University, Vienna, Austria.
  • Gilbert S; Department of Zoology, University of Oxford, Oxford, United Kingdom.
  • Carnell G; Faculty of Medicine, Imperial College London, London, United Kingdom.
  • Temperton N; The Jenner Institute, University of Oxford, Oxford, United Kingdom.
Front Immunol ; 12: 661379, 2021.
Article em En | MEDLINE | ID: mdl-34108964
Influenza B viruses (IBV) cause respiratory disease epidemics in humans and are therefore components of seasonal influenza vaccines. Serological methods are employed to evaluate vaccine immunogenicity prior to licensure. However, classical methods to assess influenza vaccine immunogenicity such as the hemagglutination inhibition assay (HI) and the serial radial hemolysis assay (SRH), have been proven to have many limitations. As such, there is a need to develop innovative methods that can improve on these traditional assays and provide advantages such as ease of production and access, safety, reproducibility, and specificity. It has been previously demonstrated that the use of replication-defective viruses, such as lentiviral vectors pseudotyped with influenza A hemagglutinins in microneutralization assays (pMN) is a safe and sensitive alternative to study antibody responses elicited by natural influenza infection or vaccination. Consequently, we have produced Influenza B hemagglutinin-pseudotypes (IBV PV) using plasmid-directed transfection. To activate influenza B hemagglutinin, we have explored the use of proteases in increasing PV titers via their co-transfection during pseudotype virus production. When tested for their ability to transduce target cells, the influenza B pseudotypes produced exhibit tropism for different cell lines. The pseudotypes were evaluated as alternatives to live virus in microneutralization assays using reference sera standards, mouse and human sera collected during vaccine immunogenicity studies, surveillance sera from seals, and monoclonal antibodies (mAbs) against IBV. The influenza B pseudotype pMN was found to effectively detect neutralizing and cross-reactive responses in all assays and shows promise as an effective and versatile tool in influenza research.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vírus da Influenza B / Vacinas contra Influenza / Lentivirus / Glicoproteínas de Hemaglutininação de Vírus da Influenza / Imunogenicidade da Vacina / Anticorpos Monoclonais Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vírus da Influenza B / Vacinas contra Influenza / Lentivirus / Glicoproteínas de Hemaglutininação de Vírus da Influenza / Imunogenicidade da Vacina / Anticorpos Monoclonais Idioma: En Ano de publicação: 2021 Tipo de documento: Article