Your browser doesn't support javascript.
loading
Silent information regulator 1 suppresses epithelial-to-mesenchymal transition in lung cancer cells via its regulation of mitochondria status.
Zhang, Jiaxin; Peng, Jie; Kong, Deqin; Wang, Xiang; Wang, Zhao; Liu, Jiangzheng; Yu, Weihua; Wu, Hao; Long, Zi; Zhang, Wei; Liu, Rui; Hai, Chunxu.
Afiliação
  • Zhang J; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
  • Peng J; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
  • Kong D; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
  • Wang X; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
  • Wang Z; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
  • Liu J; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
  • Yu W; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
  • Wu H; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
  • Long Z; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
  • Zhang W; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
  • Liu R; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China. Electronic address: liurui123@fmmu.
  • Hai C; Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China. Electronic address: cx-hai@fmmu.edu
Life Sci ; 280: 119716, 2021 Sep 01.
Article em En | MEDLINE | ID: mdl-34119539
ABSTRACT

AIMS:

Silent information regulator 1 (SIRT1) is a NAD+-dependent protein-modifying enzyme involved in regulating gene expression, DNA damage repair, cell metabolism, and mitochondrial functions. Given that it acts as both a tumor promoter and suppressor, the complex mechanisms underlying SIRT1 signaling in cancer remain controversial. Epithelial-to-mesenchymal transition (EMT) plays a key role in the progression of carcinogenesis and tumors metastasis. Studies have shown that mitochondrial defects are critical in EMT process, and SIRT1 is found to regulate the generation and energy metabolism of mitochondria. Here, we elucidate a novel mechanism by which SIRT1 affects EMT in lung cancer cells via its regulation on mitochondria. MAIN

METHODS:

SIRT1 signaling was detected in TGF-ß1-induced EMT and was found to regulate mitochondria status, including mitochondrial biogenesis-related protein levels as detected by western blotting, mitochondrial structure observed by transmission electron microscopy, and respiratory functions analyzed by a respiration capacity assay. The effects of modulating SIRT1 expression on EMT and migration of lung cancer cells or normal cells were evaluated by in vitro and in vivo models. KEY

FINDINGS:

We found that the regulation of SIRT1 signaling on the biogenesis or functions of mitochondria was critical to EMT. Overexpression of SIRT1 reduced EMT or metastasis potential of lung cancer cells by improving the quantity and quality of mitochondria, whereas silencing SIRT1 promote EMT in cancer cells, even in normal cells by disturbing mitochondria status.

SIGNIFICANCE:

Consequently, SIRT1 is an attractive therapeutic target for reversing EMT or tumor metastasis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sirtuína 1 / Transição Epitelial-Mesenquimal / Neoplasias Pulmonares / Mitocôndrias Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sirtuína 1 / Transição Epitelial-Mesenquimal / Neoplasias Pulmonares / Mitocôndrias Idioma: En Ano de publicação: 2021 Tipo de documento: Article