Your browser doesn't support javascript.
loading
Intranasal 15d-PGJ2 ameliorates brain glucose hypometabolism via PPARγ-dependent activation of PGC-1α/GLUT4 signalling in APP/PS1 transgenic mice.
Li, Zongyang; Zhang, Yuan; Zheng, Yueyang; Liu, Wenlan; Zhang, Xiejun; Li, Weiping; Zhang, Di; Cai, Qian; Wang, Sicen; Meng, Xiangbao; Huang, Guodong.
Afiliação
  • Li Z; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035, China.
  • Zhang Y; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035, China.
  • Zheng Y; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035, China.
  • Liu W; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035, China.
  • Zhang X; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035, China.
  • Li W; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035, China.
  • Zhang D; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035, China.
  • Cai Q; College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou, 510632, China.
  • Wang S; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No.76, Yanta Westroad, Xi'an, 710061, China.
  • Meng X; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035, China; College of Pharmacy, Jinan University, No. 601 Huangpu
  • Huang G; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035, China. Electronic address: huangguodong@email.szu.edu.cn.
Neuropharmacology ; 196: 108685, 2021 09 15.
Article em En | MEDLINE | ID: mdl-34175325
Targeting the common molecular mechanism of type 2 diabetes mellitus and Alzheimer's disease (AD), including dysregulation of glucose metabolism, insulin resistance, and neuroinflammation, might be an efficient treatment strategy for AD. Previous studies have shown that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), an endogenous PPARγ agonist, has anti-inflammatory, insulin sensitizing and anti-diabetic effects. However, whether 15d-PGJ2 has beneficial effects on AD remains to be elucidated. In the present study, we found that intranasal administration of 15d-PGJ2 (300 ng/30 µL/day) for 3 months significantly inhibited Aß plaques, suppressed neuroinflammation, and attenuated cognitive deficits in APP/PS1 transgenic mice. Interestingly, 15d-PGJ2 treatment could increase brain glucose uptake, as detected by 18F-FDG microPET imaging, and co-localization of GLUT4 and NeuN in the hippocampus of APP/PS1 mice. Furthermore, 15d-PGJ2 markedly increased the expression of PPARγ and PGC-1α, upregulated GLUT4, and decreased the phosphorylation of IRS-1 (Ser616) in the hippocampus of APP/PS1 mice. Importantly, co-administration of a PPARγ antagonist GW9662 abrogated these protective effects of 15d-PGJ2. Collectively, intranasal 15d-PGJ2 conferred protective effects against AD by activating PPARγ-dependent PGC-1α/GLUT4 signalling. The PPARγ agonist 15d-PGJ2 might be a potential therapeutic drug for AD.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Prostaglandina D2 / PPAR gama / Doença de Alzheimer / Glucose / Fatores Imunológicos / Neurônios Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Prostaglandina D2 / PPAR gama / Doença de Alzheimer / Glucose / Fatores Imunológicos / Neurônios Idioma: En Ano de publicação: 2021 Tipo de documento: Article