Your browser doesn't support javascript.
loading
MoS2 with Stable Photoluminescence Enhancement under Stretching via Plasmonic Surface Lattice Resonance.
Chiang, Yen-Ju; Lu, Tsan-Wen; Huang, Pin-Ruei; Lin, Shih-Yen; Lee, Po-Tsung.
Afiliação
  • Chiang YJ; Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Rm. 401 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 300093, Taiwan.
  • Lu TW; Department of Photonics, College of Electrical and Computer Engineering, National Chiao Tung University, Rm. 401 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 300093, Taiwan.
  • Huang PR; Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Rm. 401 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 300093, Taiwan.
  • Lin SY; Department of Photonics, College of Electrical and Computer Engineering, National Chiao Tung University, Rm. 401 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 300093, Taiwan.
  • Lee PT; Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Rm. 401 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 300093, Taiwan.
Nanomaterials (Basel) ; 11(7)2021 Jun 28.
Article em En | MEDLINE | ID: mdl-34203481
ABSTRACT
In this study, by combining a large-area MoS2 monolayer with silver plasmonic nanostructures in a deformable polydimethylsiloxane substrate, we theoretically and experimentally studied the photoluminescence (PL) enhancement of MoS2 by surface lattice resonance (SLR) modes of different silver plasmonic nanostructures. We also observed the stable PL enhancement of MoS2 by silver nanodisc arrays under differently applied stretching strains, caused by the mechanical holding effect of the MoS2 monolayer. We believe the results presented herein can guarantee the possibility of stably enhancing the light emission of transition metal dichalcogenides using SLR modes in a deformable platform.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article