Your browser doesn't support javascript.
loading
Constructing π-Stacked Supramolecular Cage Based Hierarchical Self-Assemblies via π···π Stacking and Hydrogen Bonding.
Li, Guo-Ling; Zhuo, Zhu; Wang, Bin; Cao, Xue-Li; Su, Hai-Feng; Wang, Wei; Huang, You-Gui; Hong, Maochun.
Afiliação
  • Li GL; CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Zhuo Z; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
  • Wang B; CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Cao XL; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
  • Su HF; CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Wang W; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
  • Huang YG; CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Hong M; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
J Am Chem Soc ; 143(29): 10920-10929, 2021 Jul 28.
Article em En | MEDLINE | ID: mdl-34270238
ABSTRACT
Constructing supramolecular cages with multiple subunits via weak intermolecular interactions is a long-standing challenge in chemistry. So far, π-stacked supramolecular cages still remain unexplored. Here, we report a series of π-stacked cage based hierarchical self-assemblies. The π-stacked cage (π-MX-cage) is assembled from 16 [MXL]+ ions (M = Mn2+, Co2+; X = Br-, SCN-, Cl-; and L = tris(2-benzimidazolylmethyl)amine) via 18 intermolecular π-stacking interactions. The tetrahedral cage, consisting of four [MXL]+ ions as the vertexes and six pairs of [MXL]+ ions as the edges, features 48 exterior N-H hydrogen bond donors for hydrogen bond formation with guest molecules. By variation of the M2+/X- pair, the π-MX-cage demonstrates unique versatility for incorporating a wide variety of species via different hydrogen-bonding modes during the assembly of hierarchical superstructures. In specific, the π-MnBr-cages encapsulate acetonitrile (CH3CN) or cis-1,3,5-cyclohexanetricarbonitrile (cis-HTN) molecules in the central voids, while a core-shell tetrahedral inorganic cluster [Mn(H2O)6]@([Mn(H2O)4]4[Br42-]6) (Mn@Mn4-cage) is captured within the interstitial regions between cages. The π-CoSCN-cages are capable of stabilizing reactive sulfur-containing species, such as S2O42-, S2O62-, and HSO3- ions, in the hierarchical superstructure. Finally, H2PO4- ions are incorporated between π-CoCl-cages, resulting in an inorganic mesoporous framework. These results provide insights into further exploring the chemistry and hierarchical assembly of supramolecular cages based on π-π stacking intermolecular interactions.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article