Your browser doesn't support javascript.
loading
The adsorption-desorption characteristics and degradation kinetics of ceftiofur in different agricultural soils.
An, Boyu; Xu, Xiangyue; Ma, Wenjin; Huo, Meixia; Wang, Hanyu; Liu, Zhenli; Cheng, Guyue; Huang, Lingli.
Afiliação
  • An B; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, C
  • Xu X; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, C
  • Ma W; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, C
  • Huo M; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, C
  • Wang H; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, C
  • Liu Z; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, C
  • Cheng G; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, C
  • Huang L; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, C
Ecotoxicol Environ Saf ; 222: 112503, 2021 Oct 01.
Article em En | MEDLINE | ID: mdl-34273851
ABSTRACT
Cephalosporins are one of the most widely used antibiotics. When cephalosporins are discharged into the environment, they not only induce the production of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARBs) but also cause toxic effects on animals and plants. Due to their complicated environmental behavior and lack of relevant data, the environmental behavior remains unclear. In this study, the adsorption-desorption and degradation characteristics of the third-generation cephalosporin drug ceftiofur (CEF) were investigated in three agricultural soils (sandy loam, loam and clay). According to the relevant parameters of the Freundlich adsorption isotherm (the Kf range was 57.63-122.44 µg1-1/n L1/n kg-1), CEF was adsorbed moderately in the soils and had the potential to migrate into groundwater. CEF exhibited low persistence in the soils and faster degradation than other antibiotics, such as tetracyclines and fluoroquinolones. The degradation half-lives (DT50) of CEF in soils ranged from 0.76 days to 4.31 days. Adding feces, increasing the water content, providing light and increasing the temperature significantly accelerated the degradation of CEF in soils. The DT50 values of CEF in soils were significantly prolonged when the soils were sterilized, indicating that both physical degradation and biodegradation played important roles in the degradation of CEF in soils. The DT50 values of CEF in soils were significantly prolonged at high concentrations, indicating that the degradability of CEF in soils was affected by the initial concentration. No significant differences were observed in the DT50 values for the different soil types (p > 0.05). This study provides useful information about the environmental behavior of CEF and improves the environmental risk assessment of CEF.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Solo / Poluentes do Solo Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Solo / Poluentes do Solo Idioma: En Ano de publicação: 2021 Tipo de documento: Article