Your browser doesn't support javascript.
loading
DNA-loop-extruding SMC complexes can traverse one another in vivo.
Brandão, Hugo B; Ren, Zhongqing; Karaboja, Xheni; Mirny, Leonid A; Wang, Xindan.
Afiliação
  • Brandão HB; Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA.
  • Ren Z; Department of Biology, Indiana University, Bloomington, IN, USA.
  • Karaboja X; Department of Biology, Indiana University, Bloomington, IN, USA.
  • Mirny LA; Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA. leonid@mit.edu.
  • Wang X; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. leonid@mit.edu.
Nat Struct Mol Biol ; 28(8): 642-651, 2021 08.
Article em En | MEDLINE | ID: mdl-34312537
ABSTRACT
Chromosome organization mediated by structural maintenance of chromosomes (SMC) complexes is vital in many organisms. SMC complexes act as motors that extrude DNA loops, but it remains unclear what happens when multiple complexes encounter one another on the same DNA in living cells and how these interactions may help to organize an active genome. We therefore created a crash-course track system to study SMC complex encounters in vivo by engineering defined SMC loading sites in the Bacillus subtilis chromosome. Chromosome conformation capture (Hi-C) analyses of over 20 engineered strains show an amazing variety of chromosome folding patterns. Through three-dimensional polymer simulations and theory, we determine that these patterns require SMC complexes to bypass each other in vivo, as recently seen in an in vitro study. We posit that the bypassing activity enables SMC complexes to avoid traffic jams while spatially organizing the genome.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacillus subtilis / DNA Bacteriano / Proteínas Cromossômicas não Histona / Proteínas de Ciclo Celular / Conformação de Ácido Nucleico Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacillus subtilis / DNA Bacteriano / Proteínas Cromossômicas não Histona / Proteínas de Ciclo Celular / Conformação de Ácido Nucleico Idioma: En Ano de publicação: 2021 Tipo de documento: Article