Your browser doesn't support javascript.
loading
Models of heterogeneous dopamine signaling in an insect learning and memory center.
Jiang, Linnie; Litwin-Kumar, Ashok.
Afiliação
  • Jiang L; Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America.
  • Litwin-Kumar A; Neurosciences Program, Stanford University, Stanford, California, United States of America.
PLoS Comput Biol ; 17(8): e1009205, 2021 08.
Article em En | MEDLINE | ID: mdl-34375329
ABSTRACT
The Drosophila mushroom body exhibits dopamine dependent synaptic plasticity that underlies the acquisition of associative memories. Recordings of dopamine neurons in this system have identified signals related to external reinforcement such as reward and punishment. However, other factors including locomotion, novelty, reward expectation, and internal state have also recently been shown to modulate dopamine neurons. This heterogeneity is at odds with typical modeling approaches in which these neurons are assumed to encode a global, scalar error signal. How is dopamine dependent plasticity coordinated in the presence of such heterogeneity? We develop a modeling approach that infers a pattern of dopamine activity sufficient to solve defined behavioral tasks, given architectural constraints informed by knowledge of mushroom body circuitry. Model dopamine neurons exhibit diverse tuning to task parameters while nonetheless producing coherent learned behaviors. Notably, reward prediction error emerges as a mode of population activity distributed across these neurons. Our results provide a mechanistic framework that accounts for the heterogeneity of dopamine activity during learning and behavior.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dopamina / Corpos Pedunculados / Drosophila / Aprendizagem / Memória / Modelos Neurológicos Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dopamina / Corpos Pedunculados / Drosophila / Aprendizagem / Memória / Modelos Neurológicos Idioma: En Ano de publicação: 2021 Tipo de documento: Article