Your browser doesn't support javascript.
loading
Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease.
Ramadier, Sophie; Chalumeau, Anne; Felix, Tristan; Othman, Nadia; Aknoun, Sherazade; Casini, Antonio; Maule, Giulia; Masson, Cecile; De Cian, Anne; Frati, Giacomo; Brusson, Megane; Concordet, Jean-Paul; Cavazzana, Marina; Cereseto, Anna; El Nemer, Wassim; Amendola, Mario; Wattellier, Benoit; Meneghini, Vasco; Miccio, Annarita.
Afiliação
  • Ramadier S; Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France; Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France.
  • Chalumeau A; Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France.
  • Felix T; Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France.
  • Othman N; Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France.
  • Aknoun S; Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France.
  • Casini A; CIBIO, University of Trento, 38100 Trento, Italy.
  • Maule G; CIBIO, University of Trento, 38100 Trento, Italy.
  • Masson C; Paris-Descartes Bioinformatics Platform, Imagine Institute, 75015 Paris, France.
  • De Cian A; INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, 75015 Paris, France.
  • Frati G; Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France.
  • Brusson M; Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France.
  • Concordet JP; INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, 75015 Paris, France.
  • Cavazzana M; Université de Paris, 75015 Paris, France; Imagine Institute, 75015 Paris, France; Biotherapy Department and Clinical Investigation Center, Assistance Publique Hôpitaux de Paris, INSERM, 75015 Paris, France.
  • Cereseto A; CIBIO, University of Trento, 38100 Trento, Italy.
  • El Nemer W; Etablissement Français du Sang PACA-Corse, Marseille, France; Aix Marseille Université, EFS, CNRS, ADES, "Biologie des Groupes Sanguins," 13000 Marseille, France; Laboratoire d'Excellence GR-Ex, Paris, France.
  • Amendola M; Genethon, INSERM UMR951, 91000 Evry, France.
  • Wattellier B; Phasics, Bâtiment Explorer, Espace Technologique, Route de l'Orme des Merisiers, 91190 St. Aubin, France.
  • Meneghini V; Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France. Electronic address: meneghini.vasco@hsr.it.
  • Miccio A; Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR1163, 75015 Paris, France; Université de Paris, 75015 Paris, France. Electronic address: annarita.miccio@institutimagine.org.
Mol Ther ; 30(1): 145-163, 2022 01 05.
Article em En | MEDLINE | ID: mdl-34418541
ABSTRACT
Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene leading to polymerization of the sickle hemoglobin (HbS) and deformation of red blood cells. Autologous transplantation of hematopoietic stem/progenitor cells (HSPCs) genetically modified using lentiviral vectors (LVs) to express an anti-sickling ß-globin leads to some clinical benefit in SCD patients, but it requires high-level transgene expression (i.e., high vector copy number [VCN]) to counteract HbS polymerization. Here, we developed therapeutic approaches combining LV-based gene addition and CRISPR-Cas9 strategies aimed to either knock down the sickle ß-globin and increase the incorporation of an anti-sickling globin (AS3) in hemoglobin tetramers, or to induce the expression of anti-sickling fetal γ-globins. HSPCs from SCD patients were transduced with LVs expressing AS3 and a guide RNA either targeting the endogenous ß-globin gene or regions involved in fetal hemoglobin silencing. Transfection of transduced cells with Cas9 protein resulted in high editing efficiency, elevated levels of anti-sickling hemoglobins, and rescue of the SCD phenotype at a significantly lower VCN compared to the conventional LV-based approach. This versatile platform can improve the efficacy of current gene addition approaches by combining different therapeutic strategies, thus reducing the vector amount required to achieve a therapeutic VCN and the associated genotoxicity risk.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Edição de Genes / Anemia Falciforme Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Edição de Genes / Anemia Falciforme Idioma: En Ano de publicação: 2022 Tipo de documento: Article