Your browser doesn't support javascript.
loading
The improvement of fire safety performance of flexible polyurethane foam by Highly-efficient P-N-S elemental hybrid synergistic flame retardant.
Zhang, Shenghe; Chu, Fukai; Xu, Zhoumei; Zhou, Yifan; Qiu, Yong; Qian, Lijun; Hu, Yuan; Wang, Bibo; Hu, Weizhao.
Afiliação
  • Zhang S; State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
  • Chu F; State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
  • Xu Z; State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
  • Zhou Y; State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
  • Qiu Y; State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
  • Qian L; State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
  • Hu Y; State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China.
  • Wang B; State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China. Electronic address: wbibo@ustc
  • Hu W; State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, PR China, Engineering Laboratory of Non-halogen Flame Retardants for Polymers, Beijing Technology and Business University, Beijing, 100048, China. Electronic address: hwz1988@us
J Colloid Interface Sci ; 606(Pt 1): 768-783, 2022 Jan 15.
Article em En | MEDLINE | ID: mdl-34419816
ABSTRACT
Herein, three different phosphorus-containing compounds (methyl phosphoryl dichloride, phenyl phosphoryl dichloride and phenyl dichlorophosphate) were reacted with 2-aminobenzothiazole respectively, and a series of synergistic flame retardants with phosphorus, nitrogen and sulfur elements were synthesized, named MPBT, PPBT and POBT respectively. Then, they were added to prepare flame-retardant flexible polyurethane foam (FPUF). Through the analysis of thermal stability, pyrolysis, heat release and smoke release behavior, the influence of different phosphorus-containing structures on the flame-retardant performance of FPUF was studied, and their flame-retardant mechanism was explored in detail. Among them, MPBT had the highest flame retardant efficiency with the same addition amount (10 wt%). The limiting oxygen index (LOI) value of PU/10.0% MPBT reached 22.5 %, and it successfully passed the vertical burning test. Subsequently, the addition amount of MPBT was increased and the best comprehensive performance of flame-retardant FPUF was explored. The results showed that the LOI value of PU/15.0% MPBT was increased to 23.5%. As for PU/15.0% MPBT, the peak heat release rate (PHRR) was 453 KW/m2, which was reduced by 46.64 %; and the flame retardancy index (FRI) value was also increased to 6.88. At the same time, the mechanical properties of flame-retardant FPUF were studied. The tensile strength of PU/15.0% MPBT reached 170 KPa, and the permanent deformation of FPUF/10% MPBT was only 4 %, showing its excellent resilience. The above results show that this phosphorus-containing element hybrid synergistic flame retardant (MPBT) has a very good application prospect in the field of flame-retardant polymer materials.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article