Your browser doesn't support javascript.
loading
Performance Analysis of Metalenses Based on Three Kinds of Phase Compensation Techniques.
Lu, Peiyao; Zhou, Changda; Mou, Zhen; Liu, Danhua; Teng, Shuyun.
Afiliação
  • Lu P; Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
  • Zhou C; Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
  • Mou Z; Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
  • Liu D; Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
  • Teng S; Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
Nanomaterials (Basel) ; 11(8)2021 Aug 18.
Article em En | MEDLINE | ID: mdl-34443921
ABSTRACT
The phase delays introduced by anisotropic nanounits include propagation phase delay, resonant phase delay and geometric phase delay. Various phase devices can be formed based on the metasurfaces consisting of anisotropic nanounits and the phase devices of the same kind function have different performances because of different working modes. In this paper, metalenses and vortex metalenses are chosen as examples to compare the optical performance of metasurface phase devices based on three kinds of phase compensation techniques. We design separately three kinds of metalenses and vortex metalenses using the cross nanoholes, L-shaped nanohole and V-shaped nanoholes and simulate numerically their intensity and phase distributions. Additionally, the results show the differences among these elements in structure complexity, polarization dependence, working efficiency and phase uniformity. The comparison for three kinds of metalenses clearly shows the merits of different phase compensation techniques and this work must be helpful for expanding the practical applications of metasurfaces.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article