Your browser doesn't support javascript.
loading
Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries.
Menkin, Svetlana; O'Keefe, Christopher A; Gunnarsdóttir, Anna B; Dey, Sunita; Pesci, Federico M; Shen, Zonghao; Aguadero, Ainara; Grey, Clare P.
Afiliação
  • Menkin S; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
  • O'Keefe CA; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
  • Gunnarsdóttir AB; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
  • Dey S; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
  • Pesci FM; Department of Materials, Imperial College London, Royal School of Mines, London SW7 2AZ, U.K.
  • Shen Z; Department of Materials, Imperial College London, Royal School of Mines, London SW7 2AZ, U.K.
  • Aguadero A; Department of Materials, Imperial College London, Royal School of Mines, London SW7 2AZ, U.K.
  • Grey CP; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
J Phys Chem C Nanomater Interfaces ; 125(30): 16719-16732, 2021 Aug 05.
Article em En | MEDLINE | ID: mdl-34476038
ABSTRACT
"Anode-free" batteries present a significant advantage due to their substantially higher energy density and ease of assembly in a dry air atmosphere. However, issues involving lithium dendrite growth and low cycling Coulombic efficiencies during operation remain to be solved. Solid electrolyte interphase (SEI) formation on Cu and its effect on Li plating are studied here to understand the interplay between the Cu current collector surface chemistry and plated Li morphology. A native interphase layer (N-SEI) on the Cu current collector was observed with solid-state nuclear magnetic resonance spectroscopy (ssNMR) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) studies showed that the nature of the N-SEI is affected by the copper interface composition. An X-ray photoelectron spectroscopy (XPS) study identified a relationship between the applied voltage and SEI composition. In addition to the typical SEI components, the SEI contains copper oxides (Cu x O) and their reduction reaction products. Parasitic electrochemical reactions were observed via in situ NMR measurements of Li plating efficiency. Scanning electron microscopy (SEM) studies revealed a correlation between the morphology of the plated Li and the SEI homogeneity, current density, and rest time in the electrolyte before plating. Via ToF-SIMS, we found that the preferential plating of Li on Cu is governed by the distribution of ionically conducting rather than electronic conducting compounds. The results together suggest strategies for mitigating dendrite formation by current collector pretreatment and controlled SEI formation during the first battery charge.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article